Патенты автора Мухин Владимир Витальевич (RU)

Изобретение относится к радионавигации и может быть использовано для измерения высоты и составляющих скорости воздушного судна (ВС) в радиовысотомерах (РВ) воздушных судов, в том числе и в РВ беспилотных летательных аппаратов. Техническим результатом изобретения является повышение точности и устойчивости однолучевого измерения высоты, путевой и вертикальной скорости ВС над различными видами поверхности. В заявленном способе осуществляют этапы вертикального зондирования земной поверхности, когерентного однолучевого приема отраженного сигнала, нахождения на дальностно-доплеровском портрете (ДДП) кривой максимального контраста nR(kF) двумя независимыми способами по дальности nR и частоте kF, их суммирования с получением результирующей кривой максимального контраста nRΣ(kF); некогерентного суммирования кривых максимального контраста нескольких ДДП и морфологической обработки результирующей кривой максимального контраста с отбрасыванием ложных отсчетов, нахождения оптимальной текущей оценки вектора состояния Xi=(Hi, Vпi, Vвi)T, i - индекс гипотезы о текущей Нi - высоте, Vпi - путевой скорости и Vвi - вертикальной скорости ВС. Оптимальная оценка вектора состояния Xi находится через нелинейную фильтрацию невязки прогнозируемой гипотезы о дальности ВС до кривой максимального контраста Ri(kF, Xi) относительно дальности ВС до результирующей кривой максимального контраста наблюдаемого ДДП nRΣ(kF). При нахождении nRΣ(kF) не учитывают отсчеты кривой максимального контраста, полученные при нахождении положения скачка мощности отраженного сигнала в диапазоне дальностей от до где - минимальная дальность до разрешаемых элементов ДДП, мощность отраженного сигнала от которых превышает порог обнаружения, δR - разрешение зондирующего сигнала по дальности. 1 пр., 4 ил.

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных/надводных источников радиоизлучений (ИРИ) с помощью пассивных радиолокационных станций. Технический результат - повышение достоверности отождествления сигналов в многоцелевой обстановке. В предложенном способе осуществляют проверку состоятельности отождествления пеленгов i-й ИРИ с пеленгами j-той сопровождаемой радиоизлучающей цели (РИЦ) в условиях возможного наличия в сигналах ИРИ новых (несопровождаемых) РИЦ по χ2 тесту и регулировкой экстраполированной дисперсии измерений параметров принимаемых сигналов ИРИ, ограничивающей рост экстраполированной дисперсии измерений в условиях длительного отсутствия сигналов от сопровождаемой РИЦ. 3 ил.

Изобретение относится к радиолокации и может быть использовано в системах измерения параметров движения наземных/надводных источников радиоизлучений (ИРИ) с помощью пассивной однопозиционной радиолокационной станции (ПРЛС). Техническим результатом является повышение точности ПРЛС в определении координат и параметров движения наземных/надводных мобильных ИРИ на участках наведения, когда углы пеленга и угловые скорости линии визирования малы, а также при нерегулярных поступлениях радиосигналов от ИРИ. В заявленном способе осуществляют измерение как углов визирования ИРИ - цели (ИРИ 1), так и углов визирования второго одновременно наблюдаемого ИРИ (ИРИ 2), квазилинейную косвенную фильтрацию вектора параметров состояния, включающего горизонтальные координаты местоположения, скорости и ускорения сопровождаемого ИРИ 1, координаты вектора, соединяющего местоположения наблюдаемой пары ИРИ и скорости их изменения. 12 ил.

Изобретение относится к радиолокации и может быть использовано в системах измерения параметров движения наземных (надводных) источников радиоизлучений (ИРИ) с помощью пассивной однопозиционной радиолокационной станции (ПРЛС). Техническим результатом изобретения является уменьшение времени сходимости оценок дальности и скорости сближения с ИРИ при его наблюдении ПРЛС на большом удалении, когда угловая скорость вращения линии визирования мала. Указанный результат достигается разделением априорной области возможного положения ИРИ на m подобластей меньшего размера, формированием m векторов условных начальных оценок параметров состояния источника радиоизлучений в предположении, что источник находится в соответствующей подобласти, формированием m корреляционных матриц ошибок условных начальных оценок параметров состояния ИРИ, дискретной нелинейной фильтрацией параметров состояния ИРИ в m фильтрах, отличающихся начальными оценками параметров состояния ИРИ, расчетом апостериорных вероятностей гипотез о начальном положении ИРИ, использованием наиболее правдоподобных условных оценок параметров состояния ИРИ. 9 ил.

Изобретение относится к пассивной радиолокации и может быть использовано для определения координат и параметров движения наземных (надводных) источников радиоизлучений (ИРИ) с помощью аппаратуры радиотехнической разведки (РТР), установленной на борту летательного аппарата (ЛА). Техническим результатом изобретения является обеспечение возможности определения координат и параметров движения наземных (надводных) ИРИ с неизвестными параметрами диаграмм направленности антенн, вне зависимости от режима их работы с помощью бортовой аппаратуры РТР со слабонаправленной малогабаритной антенной системой. Указанный результат достигается измерением в бортовом навигационном датчике ЛА собственных координат и проекций скорости в нормальной земной системе координат (НЗСК), высокоточным измерением в бортовой аппаратуре РТР несущей частоты принимаемых сигналов наблюдаемого ИРИ, дискретной нелинейной фильтрацией вектора параметров состояния ИРИ, включающего его горизонтальные координаты, проекции скорости в НЗСК, а также несущую частоту излучаемых сигналов, преобразованием параметров состояния ИРИ в косвенные оценки дальности до источника радиоизлучений и скорости сближения с ним. 5 ил.

Изобретение относится к радионавигации и может быть использовано для измерения высоты и составляющих скорости воздушного судна (ВС), в том числе беспилотных летательных аппаратов, по сигналам когерентного радиовысотомера (РВ). Технический результат – повышение точности однолучевого измерения высоты, путевой и вертикальной скорости ВС. Указанный результат достигается за счет нахождения гипотезы оценок высоты и составляющих скорости ВС по максимуму логарифма функции правдоподобия наблюдаемого дальностно-доплеровского портрета (ДДП) сформированной гипотезе. В качестве эталонной модели мощности сигналов, отраженных разрешаемыми элементами земной поверхности, используется новая модель, обеспечивающая инвариантность оценок высоты и составляющих скорости ВС к типу подстилающей поверхности. Нахождение максимума правдоподобных оценок высоты и составляющих скорости по максимуму логарифма правдоподобия выполняется методом Нелдера-Мида, использующего четыре гипотезы, сформированные по априорным данным о максимальных и минимальных значениях измеряемых параметров, что снижает требования к мощности вычислительных ресурсов. 5 ил., 1 прил.

Изобретение относится к радиолокации и может быть использовано в системах оценки эффективной площади рассеяния (ЭПР) аэродинамической цели. Техническим результатом является снижение разности между максимальной дальностью сопровождения флюктуирующей цели и максимальной дальностью, до которой оценки ЭПР цели близки к истинной и не требуют компенсации смещения, связанного с зависимостью от соотношения сигнал/шум. В заявленном способе при оценке ЭПР цели по максимуму функционала правдоподобия для каждой j-й гипотезы ЭПР цели функционал правдоподобия аппроксимируют двумя участками: первый участок, где амплитуда сигнала цели с шумом xi больше или равна порогу обнаружения h, - релеевским распределением при расчетной дисперсии амплитуды сигнала цели с шумом Dij, а на втором участке, где амплитуда сигнала цели xi меньше порога обнаружения h, равновероятным законом с плотностью вероятности, равной , где Dij рассчитывается по известному выражению как функция сопровождаемой по дальности и углу цели, гипотезы значения ЭПР σj, коэффициента усиления приемопередающей антенны в направлении на цель, мощности передатчика, коэффициента усиления приемника kУi на сопровождаемой дальности по известной зависимости коэффициента усиления приемника от напряжения регулировки, поступающего в приемник от системы автоматической регулировки усиления. 6 ил.

Изобретение относится к способу наведения летательного аппарата (ЛА) на наземные цели по данным радиолокатора с синтезированной апертурой антенны (РСА). Для наведения ЛА измеряют по данным инерциальной навигационной системы текущих горизонтального бокового ускорения ЛА, путевой скорости, углов крена, тангажа, рысканья и координат ЛА в нормальной земной системе координат, производят подлет ЛА к участку наведения и наведение определенным образом. Обеспечивается увеличение точности наведения ЛА без предварительного моделирования. 7 ил.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) для непрерывной селекции, сопровождения интенсивно маневрирующей воздушной цели (МВЦ), в том числе информационного обеспечения процесса наведения летательного аппарата (ЛА). Техническим результатом заявленного изобретения является снижение ошибок управления приводом антенны РЛС ЛА по углу и угловой скорости при сопровождении МВЦ. В заявленном способе выполняют определение оптимальных, однозначно связанных с заданными параметрами привода антенны весовых коэффициентов ошибок управления приводом антенны по углу и угловой скорости рассчитанными через нахождение коэффициентов матрицы усиления сигналов управления, с учетом полной матрицы штрафов за точность в текущий момент времени управления. Расчет исключает трудоемкий, не оптимальный по результату поиск весов ошибок управления методом перебора (методом проб и ошибок). 12 ил.

Изобретение относится к радиолокации и может быть использовано в системах измерения параметров движения наземных (надводных) источников радиоизлучений (ИРИ) с помощью пассивной однопозиционной радиолокационной станции (ПРЛС). Техническим результатом изобретения является повышение точности ПРЛС в определении дальности и скорости сближения с наземным или надводным мобильным ИРИ на дистанциях, соизмеримых с дальностью его обнаружения, когда угловая скорость линии визирования мала. Технический результат достигается квазилинейной косвенной фильтрацией вектора состояния цели, включением в вектор наблюдаемых параметров ИРИ, кроме углов визирования цели, мощности сигнала ИРИ на выходе линейной части приемника ПРЛС, в число фильтруемых параметров вектора состояния ИРИ кроме координат, скорости и ускорения ИРИ добавляется энергетический параметр ИРИ. 7 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах самонаведения, в частности самонаведения летательного аппарата (ЛА) на наземные цели с помощью радиолокатора, использующего синтезированные апертуры антенны либо доплеровское обужение диаграммы направленности луча. Технический результат – расширение функциональных возможностей за счет снижения амплитуды боковых перегрузок ЛА, наводимого по данным радиолокатора с синтезируемой апертурой, на начальном участке наведения. Для этого в сигнале управления заменяется вес ошибки по бортовому пеленгу на отношение штрафов за ошибку по бортовому пеленгу к путевой скорости ЛА, вес ошибки по угловой скорости направления «ЛА-цель» заменяется на произведение отношения штрафов по угловой скорости на косинус бортового пеленга, деленное на дальность цели. При этом снижение амплитуды боковых перегрузок ЛА позволяет повысить вероятность устойчивого сопровождения цели, уменьшить время отработки ошибок траектории ЛА от расчетной, повысить экономичность наведения. 2 н.п. ф-лы, 7 ил.

Изобретение относится к системам радиовидения, обеспечивающим получение изображений объектов сцены, сравнимое по детальности с оптическим, и может быть использовано при синтезе апертуры в радиолокационных станциях (РЛС) с непрерывным линейно-частотно-модулированным сигналом. Достигаемый технический результат - повышение скрытности работы РЛС с одновременным упрощением процедуры компенсации миграции сигнала цели по дальности и фазе. Указанный результат достигается за счет работы РЛС в непрерывном режиме, приеме отраженного сигнала с получением сигнала биений отраженного сигнала с зондирующим, демодуляции сигнала биений с помощью эталонного опорного сигнала, компенсирующего миграцию сигналов сцены по дальности и фазе на интервале синтеза апертуры, после которой выполняются сжатие сигналов по дальности и селекция сигналов элементов сцены в равномерной сетке доплеровских частот. 2 ил.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, находящихся на фиксированном направлении, и может быть использовано, например, для имитации ложных целей, в том числе расположенных ближе носителя, для имитации боевой работы радиолокационной системы, а также для имитации эхо-сигналов радиовысотомеров при зондировании сигналами с различными видами линейной частотной модуляции. Достигаемый результат - имитация цели с дальностью больше или меньше дальности носителя, независимо от величины, направления и сочетания знаков скорости линейного изменения частоты зондирующего сигнала. Указанный результат достигается за счет того, что осуществляется динамическое изменение параметров имитации, в том числе в соответствии с параметрами входного зондирующего сигнала. 2 з.п. ф-лы, 8 ил.

Изобретение относится к радиолокационной измерительной технике и может быть использовано в импульсных радиолокационных станциях (РЛС) миллиметрового диапазона. Достигаемый технический результат - повышение помехозащищенности РЛС от взаимных помех и снижение погрешности измерения пеленга цели. Указанный результат достигается за счет использования в приемнике второй промежуточной частоты, приема суммарных и разностных сигналов без разделения во времени. 1 ил.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, и может быть использовано, например, для имитации ложных целей и помех для защиты присутствующих целей, а также для имитации эхо-сигналов радиолокаторов и радиовысотомеров. Достигаемый результат - упрощение требований к аппаратуре имитатора как при аналоговой, так и при цифровой обработке сигнала без существенного ухудшения качества имитируемых портретов целей при зондировании преимущественно длительными сигналами. Указанный результат достигается за счет того, что осуществляется динамическое изменение параметров имитируемых блестящих точек цели. 4 ил.

Изобретение относится к авиационному приборостроению. Предложенный навигационный комплекс предназначен для обеспечения высокоточной навигации на основе комплексной обработки информации (КОИ) систем навигации по искусственным полям Земли (СНИПЗ) и нескольких физических полей Земли (ФПЗ). Навигационный комплекс построен по интегрально-модульной архитектуре (ИМА), для чего входящие в его состав инерциальная система (ИС), баровысотомер, датчики полей (ДП), бортовая цифровая вычислительная машина (БЦВМ) и СНИПЗ выполняются в виде отдельных модулей с соответствующими чувствительными элементами и устанавливаются в едином корпусе. Данный навигационный комплекс позволяет за счет КОИ СНИПЗ и нескольких ФПЗ повысить точностные характеристики навигационного комплекса, а также надежность его работы в условиях постановки радиопомех или выведения из строя спутниковой группировки; за счет перехода с федеративной структуры комплекса на ИМА устранить асинхронность и задержку потоков данных от ИС, ДП и баровысотомера в БЦВМ и тем самым повысить его точностные характеристики, а также снизить массу, габариты, стоимость и упростить кабельную систему на борту летательного аппарата. 1 ил.

Изобретение относится к радиолокации и может быть использовано в бортовых радиовысотомерах. Достигаемый технический результат - повышение точности за счет снижения флюктуационной ошибки измерения высоты. Указанный результат достигается за счет того, что производится излучение непрерывного линейно-частотно-модулированного сигнала в сторону поверхности Земли, прием отраженных сигналов на N периодах повторения, фильтрация отраженного сигнала в согласованном с модуляцией зондирующего сигнала фильтре с получением в каждом периоде повторения огибающей амплитуды отраженного сигнала с шагом выборки, соответствующим разрешению зондирующего сигнала, определение оценки высоты летательного аппарата (ЛА) по каждой из N реализаций огибающей амплитуды отраженного сигнала в следующей последовательности: формируют многомерную гипотезу о высоте, уровне дисперсии шума и параметре, определяющем зависимость диаграммы обратного рассеяния от углового положения разрешаемого элемента поверхности, вычисляют мощность принимаемого сигнала на дальностях, соответствующих определенной гипотезе с учетом априорно известных данных о параметрах радиовысотомера, вычисляют функционал соответствия огибающей амплитуды принятого сигнала, соответствующий определенной гипотезе, перебором гипотез по максимуму функционала соответствия находят наиболее вероятную гипотезу, оценку высоты ЛА, повторяют измерения высоты по N периодам повторения, усредняют оценку высоты по N измерениям, соответственно получают итоговую оценку высоты. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к радиолокации протяженных целей и может быть использовано в бортовых радиовысотомерах. Достигаемый технический результат - обеспечение требуемой точности измерения при сниженных соотношениях сигнал : шум. Указанный результат достигается за счет того, что производится излучение зондирующего сигнала по вертикали к земной поверхности, прием отраженных сигналов на N периодах повторения, фильтрация принятого сигнала в фильтре, согласованном с модуляцией зондирующего сигнала с получением в каждом периоде повторения огибающей амплитуды отраженного сигнала, вычисление дисперсии шума и сигнала с шумом для разных гипотез положения скачка дисперсии отраженного сигнала, определение высоты летательного аппарата по положению скачка дисперсии отраженного сигнала, при этом находят положение максимума весовой суммы логарифмов дисперсии шума и сигнала с шумом, весом первого слагаемого является отрицательное число, соответствующее положению скачка дисперсии отраженного сигнала в гипотезе, а весом второго слагаемого - отрицательная разность между максимально возможным положением скачка дисперсии амплитуды отраженного сигнала и положением скачка дисперсии n в гипотезе. 2 н.п. ф-лы, 7 ил., приложение 1.
Изобретение относится к радиолокации протяженных целей и может быть использовано для измерения высоты и составляющих скорости летательных аппаратов (ЛА). Достигаемый технический результат - однолучевое измерение скорости летательного аппарата на базе радиовысотомера, позволяющее измерить высоту и составляющие скорости ЛА при сниженных габаритах антенной системы. Указанный результат достигается за счет того, что производится вертикальное зондирование земной поверхности радиолокационным сигналом через широко направленную антенну, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, первичная оценка высоты ЛА как минимальная, усредненная по нескольким измерениям дальность до точек РЛИ, превышающих порог обнаружения, нахождение кривой максимального контраста РЛИ в координатах дальность - доплеровская частота, уточнение методом итераций гипотезы измеряемых параметров за счет расчета кривой максимального контраста, соответствующего гипотезе, формирование сигнала ошибки кривой максимального контраста гипотезы относительно кривой максимального контраста РЛИ, преобразование сигнала ошибки кривой контраста в сигнал ошибки измеряемых параметров, сложение его с уточняемой гипотезой, повторение итераций и выдача в режиме слежения измеренные параметры высоты, вертикальной и путевой составляющих скорости потребителю. 3 н.п.,2 з.п.ф-лы, 10 ил., Приложение 1.

Изобретение относится к радиолокации протяженных целей. Изобретение может быть использовано в бортовых радиовысотомерах. Достигаемый технический результат - снижение флюктуационной погрешности измерения высоты за счет учета корреляционных связей в каналах приема. Указанный результат достигается за счет излучения сигнала в сторону поверхности Земли, приема отраженных сигналов на N периодах повторения, фильтрации принятого сигнала в фильтре, согласованном с модуляцией зондирующего сигнала, нахождения на N периодах повторения огибающей мощности отраженного сигнала с шагом выборки, соответствующим разрешению зондирующего сигнала, расчета предварительных оценок высоты, дисперсии сигнала с шумом и дисперсии шума, формирования гипотез о высоте ЛА, расчета для каждой гипотезы матрицы-гипотезы взаимных дисперсий, определителя матрицы-гипотезы взаимных дисперсий и обратной матрицы-гипотезы взаимных дисперсий, расчета функционала соответствия принятого сигнала гипотезе, нахождения гипотезы, соответствующей максимуму функционала соответствия, соответственно задержки отраженного сигнала и высоты. 2 н. и 2 з.п. ф-лы, 4 ил., 1 табл., 1 прилож.

Группа изобретений относится к радиолокации протяженных целей и может быть использована для измерения высоты и составляющих скорости летательных аппаратов. Достигаемый технический результат - однолучевое измерение высоты и составляющих скорости ЛА на базе радиовысотомера при сниженных габаритах антенной системы. Указанный результат достигается за счет того, что производится вертикальное зондирование земной поверхности радиолокационным сигналом через широко направленную антенну, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, предварительная оценка высоты ЛА, снижающая априорную неопределенность, при этом в полученном РЛИ находят кривую максимального контраста в координатах дальность - доплеровская частота, рассчитывают кривую максимального контраста для всех априорно возможных комбинаций путевой VП и вертикальной VB составляющих скорости при полете на высоте Н, перебором гипотез находят гипотезу, соответствующую минимуму суммы квадратов разностей гипотетической кривой максимального контраста от кривой максимального контраста, полученную по РЛИ. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, и может быть использовано, например, для имитации ложных целей и помех для защиты присутствующих целей, а также для имитации эхо-сигналов радиолокаторов и радиовысотомеров. Параметры блестящих точек целей поступают из отдельного внешнего устройства. Изобретение позволяет отказаться от многовходового сумматора сигналов блестящих точек целей и набора модуляторов, сложных для реализации, при большом числе блестящих точек, особенно при цифровой обработке сигнала. Предлагаемый имитатор вместо сумматора содержит синхронизатор, один либо два коммутатора и общий модулятор. В варианте с двумя коммутаторами вместо набора модуляторов используется только один общий модулятор. Достигаемый технический результат - упрощение требований к аппаратуре имитатора как при аналоговой, так и при цифровой обработке сигнала без существенного ухудшения качества имитируемых портретов целей при зондировании преимущественно длительными сигналами. 7 ил.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, находящихся на фиксированном направлении, и может быть использовано для имитации ложных целей, в том числе расположенных ближе носителя, для имитации боевой работы радиолокационной системы, а также для имитации эхо-сигналов радиовысотомеров при зондировании сигналами с различными видами линейной частотной модуляции

Изобретение относится к радиолокации

Изобретение относится к радиолокации, в частности к имитаторам радиолокационного сигнала цели, и может быть использовано в составе комплекса, имитирующего многоцелевую сцену по дальности, доплеровской частоте и углу для исследования процессов поиска, обнаружения и сопровождения цели (целей)

Изобретение относится к радиолокации, в частности к имитаторам радиолокационного сигнала сцены, на которой в широком диапазоне углов имеются подвижные по дальности и углу цели, и может быть использовано для исследования процессов обнаружения и сопровождения целей радиолокационной станцией (РЛС) в широком диапазоне дальностей и углов

Изобретение относится к радиолокации, в частности к приемопередающим модулям (ППМ) активной фазированной антенной решетки (АФАР), управляемой как по направлению излучения и приема, так и по параметрам модуляции зондирующего сигнала, работающей в составе импульсно-доплеровской бортовой радиолокационной станции (БРЛС)

Изобретение относится к радиолокации и может быть использовано для исследований процессов обнаружения и сопровождения целей при взаимном перемещении цели и РЛС

 


Наверх