Патенты автора Варламова Наталья Ивановна (RU)

Авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос. Турбокомпрессорный блок включает контур низкого давления и контур высокого давления с камерой сгорания, регулятор расхода топлива выполнен с двумя выходами, один из которых связан с камерой сгорания. Выходы для анодного и катодного газов батареи твердооксидных топливных элементов соединены газоводами с входом камеры сгорания. Тяговый вентилятор снабжен электродвигателем, электрически связанным с батареей твердооксидных топливных элементов. Авиационная силовая установка снабжена риформером, связанным с батареей твердооксидных топливных элементов с образованием электрохимического генератора. Контур высокого давления содержит заслонку и дополнительный контур, образованный внутренним вентилятором и электрохимическим генератором. Камера сгорания выполнена в виде низкоэмиссионной камеры сгорания со стабилизатором пламени, подключенным к выходному газоводу анодного газа электрохимического генератора, второй выход регулятора расхода топлива связан с входом риформера электрохимического генератора. Изобретение обеспечивает улучшение экологических показателей авиационной силовой установки на взлетном режиме и повышение ее экономичности на крейсерском режиме. 4 ил.

Изобретение относится к жидким углеродсодержащим топливам, содержащим присадки, применительно к оценке эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя. Способ заключается в том, что на первом этапе в испарительную камеру сгорания подают эталонное топливо и воздух с заданными температурой и давлением, коэффициент избытка воздуха устанавливают из условия сгорания более 95% топлива, увеличивают расход воздуха и топлива при неизменном коэффициенте избытка воздуха, добиваясь бедного срыва пламени в камере сгорания, и фиксируют значение объемного расхода воздуха, соответствующего режиму срыва пламени, на втором этапе используют топливо с присадкой - промотором горения, которое подают в испарительную камеру сгорания при расходе, равном начальному расходу топлива на первом этапе, воздух подают с коэффициентом избытка воздуха при температуре и давлении, равными выбранным на первом этапе, увеличивают расход воздуха и топлива при неизменном коэффициенте избытка воздуха, добиваясь бедного срыва пламени в камере сгорания, и фиксируют значение объемного расхода воздуха, соответствующего режиму срыва пламени, и оценку эффективности присадки - промотора горения осуществляют по соотношению объемных расходов воздуха, зафиксированных на первом и втором этапах. Достигается повышение точности оценки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного канала продуктов сгорания из турбины в атмосферу. Контур холодного теплоносителя выполнен в виде канала противоточного выпускному каналу с подключением на входе противоточного канала коллектора подачи топлива и коллектора подачи воды, а на выходе - коллектора подачи пара смеси воды и топлива в камеру сгорания. Выпускной канал продуктов сгорания в атмосферу на выходе из турбины снабжен последовательно установленными котлом-утилизатором, радиатором и конденсатором воды. Противоточный канал контура холодного теплоносителя и коллектор подачи продуктов конверсии топливо-водяной смеси в синтез-газ сформированы в виде спиральных трубчатых каналов, расположенных последовательно внутри вдоль стенки выпускного канала котла утилизатора и вдоль стенки жаровой трубы камеры сгорания. В способе функционирования установки в камеру сгорания ГТУ в качестве топлива подаются продукты конверсии топливо-водяной смеси в водородосодержащий синтез-газ. Изобретение обеспечивает экономию топлива при сжигании и независимость работы установки от посторонних источников воды, снижает вредные выбросы в атмосферу и позволяет использовать для ГТУ отработавшие свой ресурс авиационные газотурбинные двигатели. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к топливной композиции авиационного неэтилированного бензина, которая в качестве изомерных углеводородов содержит технический изооктан, изопентан или изомеризат С6 или их смесь; в качестве ароматических углеводородов содержит толуол или фракцию бензина риформинга НК-180°C или их смесь, а также дополнительно содержит монометиланилин (ММА) и метил-трет-бутиловый эфир (МТБЭ) при следующем соотношении компонентов, мас.%: технический изооктан 30-70 изопентан или изомеризат C6 или их смесь 10-25 толуол или фракция бензина риформинга НК-180°C   или их смесь 8-40 ММА 0,5-2,0 МТБЭ до 15 Топливная композиция может содержать присадки, выбранные из группы: антикоррозионные, антистатические, противообледенительные и другие, разрешенные стандартом на авиационный бензин. Топливная композиция авиационного неэтилированного бензина обладает необходимой детонационной стойкостью, сниженным содержанием ароматических углеводородов, высокой теплотой сгорания и низким концом кипения не более 180°C. 1 з.п. ф-лы, 2 табл.

Изобретение относится к способу получения смеси гексацикло[8.4.0.0 2,17.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12 .09,13]тетрадецена-3 изомеризацией бинора-S при повышенной температуре на платиновом катализатореPt/SiO 2, характеризующемуся тем, что реакцию проводят на платиновом катализаторе, полученном методом пропитки шарикового широкопористого силикагеля диаметром 2,5-3,5 мм водным раствором платинохлористоводородной кислоты Н2РtCl6 до содержания платины 0,25-0,5%, бинор-S подают в реактор в виде 20-40%-ного раствора в бензоле или толуоле при объемной скорости 50-60 мл/ч при температуре 240-250°С

Изобретение относится к способу получения смеси гексацикло[8.4.00 2,7.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12 .09,13]тетрадецена-3 изомеризацией бинора-S под действием фосфорного ангидрида P2O5 (P4 O10), характеризующемуся тем, что реакцию проводят в среде хлористого метилена при 25-35°С с добавлением к P2O5 оксида алюминия Al2O 3 при следующем соотношении реагентов: [Al2O 3]:[P2O5]:[бинор-S]=0.2÷0.3:0.2÷0.3:1
Изобретение относится к способам защиты углеводородного топлива от микробиологического поражения и применяемым для этой цели биоцидным присадкам и может быть использовано в нефте-, газоперекачивающей промышленности, машиностроении, авиационной технике
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх