Патенты автора Казберович Алексей Михайлович (RU)

Предлагаемое изобретение относится к области порошковой металлургии, в частности к оборудованию для изостатического прессования порошковых материалов, заключенных газостат. Теплоизолирующий колпак печи газостата содержит корпус, выполненный в виде муфеля и внешней оболочки с боковыми и верхними блоками теплоизоляции между ними, распределительный кольцевой коллектор с регулирующими клапанами и теплообменником в виде пучка Г-образных труб, размещенных на внешней поверхности муфеля и сообщают пространство над верхним блоком теплоизоляции с коллектором, при этом кольцевой коллектор выполнен в виде отдельных камер с регулирующим клапаном на каждой из них, а пространство между камерами заполнено теплоизоляцией. Технический результат заключается в увеличении габарита по диаметру рабочего пространства, обеспечивающего расширение номенклатуры обрабатываемых заготовок по габаритам. 2 ил., 1 табл.

Изобретение относится к металлургии, а именно к жаропрочным гранулируемым сплавам на никелевой основе, предназначенным для изготовления критических деталей ГТД, ЖРД и для применения в других деталях, эксплуатирующихся длительное время при температурах выше 500°С с рабочей температурой до 750°С или кратковременно при температурах до 800°С. Жаропрочный гранулируемый сплав на основе никеля содержит, мас. %: Cr 8,0-11,0, Со 14,0-18,0, W 4,5-5,9, Мо 3,0-5,5, Al 4,5-6,0, Ti 1,5-3,0, Nb 2,0-3,5, Hf от 0,08 до менее 0,2, С от 0,02 до менее 0,08, В от 0,006 до менее 0,019, Mg от 0,003 до менее 0,005, Се от 0,001 до менее 0,01, Zr от 0,003 до менее 0,01, Ni остальное. Сплав характеризуется высокими значениями механических свойств при комнатной температуре и при 800°С, а также высокой долговечностью при испытаниях на длительную прочность при 650°С и сопротивление малоцикловой усталости (МЦУ) при 650°С. 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам для дисков газовых турбин, получаемым методом металлургии гранул и предназначенным для работы в условиях активного воздействия высоких температур и напряжений. Гранульный жаропрочный никелевый сплав содержит, мас.%: углерод - 0,06-0,15, хром - 4,0-8,0, кобальт - 14,0-20,0, вольфрам - 1,5-4,0, молибден - 2,0-5,0, титан - 2,0-5,0, алюминий - 3,0-5,0, ниобий - 1,5-3,5, тантал - 4,0-7,0, рений - 0,5-2,5, гафний - 0,05-0,3, железо - 0-0,01, бор - 0,01-0,03, ванадий - 0,1-0,5, цирконий - 0,01-0,03, церий - 0,01-0,05, лантан - 0,01-0,05, иттрий - 0,01-0,05, скандий - 0,01-0,05, магний - 0,01-0,06, никель - остальное. Обеспечивается высокий уровень кратковременной и длительной прочности жаропрочного никелевого сплава, получаемого методом металлургии гранул, в интервале рабочих температур от 20 до 850°С. 3 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к металлургии, к области производства сферических порошков из металлов и сплавов, предназначенных для дальнейшей переработки методами аддитивных технологий или горячего изостатического прессования в готовые изделия. Центробежный струйно-плазменный способ получения порошков металлов и сплавов включает плавление вращающейся цилиндрической заготовки плазменным потоком от плазмотрона, причем плазменный поток в виде радиальных струй, сформированных за счет приближения плазмотрона к заготовке, разгоняют до скорости, при которой сила их динамического давления, действующая на расплав по периметру торца заготовки, становится соизмеримой с центробежной силой, а формирование частиц требуемого размера обеспечивают варьированием соотношения этих сил за счет изменения частоты вращения заготовки и геометрии кольцевого сопла соответственно. Техническим результатом изобретения является снижение необходимой частоты вращения заготовки при сохранении результата по наработке мелкодисперсных фракций порошка и устранение отрывов в массе получаемых частиц порошка. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области металлургии, в частности к способам термической обработки заготовок из высоколегированных гранулируемых жаропрочных никелевых сплавов, и может быть использовано в производстве деталей газотурбинных двигателей. Способ поэтапной закалки заготовок из гранулируемых жаропрочных никелевых сплавов включает нагрев, выдержку и охлаждение. Закалку проводят в два этапа, на первом из которых нагрев заготовок в капсуле осуществляют до температуры -10+35°С относительно температуры сольвуса сплава, но ниже температуры солидуса, выдержку в вакууме при этой температуре в течение 0,25…12 ч и закалочное охлаждение заготовки в капсуле в две стадии, на первой из которых охлаждение проводят в вакууме, а на второй - в газообразном гелии под давлением не менее 2 атм., а на втором этапе закалки нагревают заготовки в капсуле или с частичным/полным удалением капсулы до температуры -10+10°С относительно температуры сольвуса с выдержкой при этой температуре в вакууме в течение 0,1…1 ч с последующим охлаждением сначала в вакууме, а затем – в газообразном гелии под давлением не менее 2 атм. Обеспечивается увеличение длительной прочности и предела текучести. 2 табл., 2 пр.

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей, работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ получения биметаллического диска газотурбинного двигателя включает засыпку в капсулу для диска, состоящего из ободной и ступичной частей, гранул двух жаропрочных никелевых сплавов, горячее изостатическое прессование капсулы и последующую термообработку. В капсулу для диска засыпают гранулы двух жаропрочных никелевых сплавов, различающихся по температуре сольвуса не более чем на 5-10°С. Для засыпки ободной части диска используют гранулы одного жаропрочного никелевого сплава с фракцией 140 мкм и более. Для ступичной части используют гранулы другого жаропрочного никелевого сплава с фракцией не более 70 мкм, при этом горячее изостатическое прессование и термообработку проводят при одной температуре, превышающей температуру сольвуса каждого сплава. Повышается КПД, ресурс и надежность и снижается вес газотурбинного двигателя за счет более высоких характеристик прочности и сопротивления малоцикловой усталости в ступице дисков турбины и повышенных характеристик жаропрочности и трещиностойкости на их ободе. 1 табл.

Изобретение относится к области порошковой металлургии жаропрочных никелевых сплавов и может быть использовано в производстве тяжелонагруженных деталей газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению. Способ получения диска газотурбинного двигателя включает засыпку в разделенную цилиндрической вставкой капсулу диска, состоящую из ободной и ступичной частей, гранул двух разных жаропрочных никелевых сплавов с функционально-градиентными свойствами или гранул разных фракций одного жаропрочного никелевого сплава с функционально-градиентными свойствами, удаление цилиндрической вставки, горячее изостатическое прессование и последующую термообработку. Обеспечивают концентричность частей диска путем установки фиксирующего кольца, разделительная вставка имеет форму тонкостенной цилиндрической обечайки с толщиной стенки, не превышающей 1 мм, и с толстостенным дном с отверстиями для засыпки гранул, а перед удалением цилиндрической вставки проводят виброуплотнение. За счет получения высокой точности расположения границы раздела и обеспечения функционально-градиентных свойств по сечению заготовки диска повышается КПД и снижается вес газотурбинного двигателя. 1 ил., 1 табл.
Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в газотурбинных двигателях (ГТД) для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Гранулы крупностью менее 100 мкм получают методом плазменной плавки и центробежного распыления вращающейся литой заготовки при скорости вращения более 15000 об/мин. Дегазацию гранул проводят в движущемся потоке при массовой подаче 10-50 кг/ч с одновременным заполнением, виброуплотнением и герметизацией капсул. Горячее изостатическое прессование и закалку проводят в течение 2-8 часов в однофазной области на 2-30°C выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 25°C/мин. Старение проводят в две стадии: для высокожаропрочных сплавов - при 850-890°C и 740-780°C, а для высокопрочных - при 800-760°C и 680-720°C. Повышается ресурс и надежность изделий, работающих в условиях жесткого нагружения в ГТД, за счет более высоких характеристик прочности, жаропрочности и трещиностойкости при рабочих температурах. 1 табл.

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов

Изобретение относится к порошковой металлургии, а именно к производству изделий из гранулируемых жаропрочных никелевых сплавов горячим изостатическим прессованием
Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве деталей газотурбинных двигателей (дисков, валов и др.), работающих в условиях жесткого циклического нагружения

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных сплавов на основе никеля, предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях
Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам

Изобретение относится к области плазмотронной техники и может быть использовано во всех отраслях промышленности, в которых применяются плазмотроны постоянного тока
Изобретение относится к области металлургии

 


Наверх