Патенты автора Волынкин Валерий Михайлович (RU)

Группа изобретений относится к неорганическим бактерицидным материалам и медицинской технике. Бактерицидное покрытие также может быть использовано при производстве стекла, керамики, огнеупорных материалов, пигментов и красок, строительных материалов, экранов дисплеев, мониторов и телевизоров. Прозрачное бактерицидное оксидное покрытие изготовлено из композиции, включающей следующие компоненты, вес.%: высокомолекулярный поливинилпирролидон - 0,20-5,00; тетраэтоксититан - 0,10-1,00; ацетон - 70,0-85,00; Mg(ClO4)2 - 0,20-5,00; циклогексанон - 5-20. Волоконно-оптический элемент содержит многожильный световод с наконечником на дистальном торце. Наконечник выполнен в виде прозрачной пластинки, которая наклеена на дистальный торец многожильного световода. Снаружи на пластинку нанесено прозрачное бактерицидное оксидное покрытие. Обеспечивается повышение прозрачности, однородности, бактерицидных и фотокаталитических свойств покрытия. 2 н. и 1 з.п. ф-лы, 3 табл., 3 пр., 5 ил.

Иммерсионная композиция относится к оптическому материаловедению и может быть использована в качестве иммерсионной жидкости в оптическом приборостроении для контроля параметров материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы, а также в геологии и минералогии для контроля и маркировки образцов природных материалов. Иммерсионная композиция содержит компоненты (мас.%): поливинилпирролидон (молекулярный вес Ms=1300000) 0,1-20, пропанол-2 18,7-79, воду 10-65, нитрат, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn, Pb, Al, Na, Mg 0,1-10, наночастицы сульфида, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn и Рb 0-10. Иммерсионная композиция обеспечивает формирование при комнатной температуре на поверхности стекол однородное прозрачное покрытие, имеющее показатель преломления 1,51-1,70. 3 ил., 4 табл., 4 пр.

Изобретение относится к неорганическим бактерицидным материалам и способам их получения, которое может быть использовано при производстве стекла, керамики, огнеупорных материалов, пигментов и красок, различных строительных материалов, экранов дисплеев, мониторов и телевизоров, различных приборов. Состав композиции содержит высокомолекулярный поливинилпирролидон, алкоксид титана, водорастворимые и термически разлагаемые при нагревании до температуры менее 550°С соль (или соли) цинка, полярные органические растворители и воду. Композиция обеспечивает формирование на поверхности стекла двухкомпонентного прозрачного оксидного покрытия, обеспечивающего высокие бактерицидные свойства и обладающего способностью эффективно генерировать активный синглетный кислород. 3 табл., 2 пр.

Изобретение относится к оптико-механической и электронной промышленности, а точнее к технологии получения композиционных материалов, содержащих полупроводниковые частицы, для оптических и электронных приборов и комплексов. Материал включает суспензию наночастиц сульфида свинца в водно-спиртовом растворе, нитрат металла и поливинилпирролидон. Также описан способ обработки материала, который включает облучение материала электромагнитным излучением с длинами волн 455-635 нм и последующую выдержку при комнатной температуре без облучения в течение 0,1-24 ч. Технический результат заключается в разработке композиционного материала, обладающего высокими нелинейно-оптическими и спектрально-люминесцентными характеристиками в видимом и ближнем ИК спектральном диапазоне, а также в разработке высокопроизводительного способа обработки материала, не требующего специального технологического оборудования. 2 н.п. ф-лы, 9 ил., 2 табл., 5 пр.

Изобретение относится к технологии специальных покрытий, обладающих способностью поглощать электромагнитное излучение определенного диапазона частот и используемых в различных областях - в строительстве и промышленности для наружных покрытий зданий и оборудования, а также в военной технике для задач маскировки и камуфляжа. Светопоглощающее покрытие, обеспечивающее достижение технического результата, включает следующие функциональные компоненты: эпоксидную смолу, низкомолекулярный полиамид, октиловый эфир, сульфид свинца. Изобретение обеспечивает покрытие, обладающее высокой адгезией к твердым материалам различной химической природы. 1 з.п. ф-лы, 1 ил., 2 пр., 2 табл.

Изобретение относится к надувным опорным устройствам, в частности к устройствам для форсирования труднопроходимых мест, например минных полей. Надувное опорное устройство содержит основной баллон из эластичного материала, опорную структуру, систему взаимосвязанных надувных средств, концевые средства стыковки и боковые средства стыковки. Система взаимосвязанных надувных средств содержит множество эластичных сфер с возможностью независимого регулирования внутреннего давления в каждой сфере и множество направляющих, установленных на верхней стороне основного баллона вдоль его продольной оси. Концевые средства стыковки на концах основного баллона и боковые средства стыковки с одной или с обеих боковых сторон основного баллона обеспечивают возможность соединения устройства с другими опорными устройствами. При этом устройство и система для форсирования труднопроходимых мест содержат по меньшей мере пару надувных опорных устройств и соединительные распорки, и два устройства, а опорная система содержит множество надувных опорных устройств и соединительных распорок. Достигается повышенная надежность, мобильность и быстрота приведения в рабочее состояние. 4 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к области оптоэлектронной техники и касается способа определения температурного распределения по поверхности светодиода. Способ включает в себя нанесение на поверхность светодиода пленки покровного материала, определение с помощью ИК тепловизионного микроскопа калибровочной зависимости излучаемого находящимся в нерабочем режиме светодиодом сигнала от температуры при внешнем нагреве, регистрацию с помощью ИК тепловизионного микроскопа излучаемого поверхностью светодиода в рабочем режиме сигнала и программную обработку полученных данных. При этом покровный материал обладает прозрачностью в области собственной электролюминесценции светодиода и его свойства в отношении поглощения и излучения электромагнитных волн ИК диапазона близки к свойствам абсолютно черного тела в области спектральной чувствительности ИК тепловизионного микроскопа. Технический результат заключается в повышении точности измерений. 7 ил.

Иммерсионная композиция содержит тетрагидрофуран и сополимер винилхлорида, винилацетата и дифенил при следующем соотношении компонентов в вес.%: тетрагидрофуран - 70-81; сополимер винилхлорида (90%) и винилацетата (10%) - 15-20; дифенил - 4-10. Технический результат заключается в разработке новой нетоксичной иммерсионной композиции, которая имеет показатель преломления (nD=1,51-1,53), прозрачна в видимой части спектра и применима для широкого круга оптических и лазерных стекол, а также для стекол, используемых при производстве дисплеев различных компьютерных систем, мобильных телефонов и других средств связи. 1 табл., 2 пр., 1 ил.

Изобретение относится к иммерсионной жидкости, которая может быть использована в оптическом приборостроении для контроля оптических параметров неорганических материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы. Иммерсионная жидкость для оптических исследований содержит 97-99 вес. % мета-бис(мета-феноксифенокси)бензола и 1-3 вес. % 2-нафтола. Для уменьшения вязкости и поверхностного натяжения иммерсионная жидкость может дополнительно содержать 0,1-3 вес. % дибутилсебацината сверх 100 вес. % указанного состава. Предложенная иммерсионная жидкость нетоксична, обладает высоким значением показателя преломления nD>1,6 и высокой адгезией к неорганическим оптическим материалам, что позволяет наносить на всю поверхность исследуемого субстрата или его части тонкий слой иммерсии и использовать для эффективного контроля качества крупногабаритные оптические изделия без погружения в кювету с иммерсионной жидкостью. 1 з.п. ф-лы, 2 ил., 2 табл., 2 пр.

Изобретение относится к горнодобывающей промышленности. Технический результат - повышение добычи углеводородов и обеспечение бесперебойной работы скважин без остановок добычи на время ремонтов. В способе в скважины закачивают рабочие жидкости для обработки призабойных зон и вытеснения нефтей из пластов, производят ремонт скважин и антикоррозийную обработку труб и оборудования в них, очищают трубы в верхних частях добывающих скважин от асфальтеновых и смолопарафиновых отложений АСПО. В качестве рабочей жидкости используют комплексный органический растворитель, состоящий из производных ароматических углеводородов, сложных эфиров карбоновых и органических кислот, у которого изменяют плотность и вязкость в зависимости от изменяющихся условий конкретных месторождений. Процесс обработки пластов указанным растворителем из всех добывающих скважин на месторождениях повторяют многократно через заданные промежутки времени и поддерживают требуемый уровень добычи нефтей и газов на месторождениях. Для очистки от АСПО многократно прокачивают указанный растворитель с введенными в него антикоррозийными добавками в виде фосфатов по трубам из забоев скважин на поверхность и обратно по замкнутому циклу. Для добычи газа из месторождений с высокой обводненностью пластов и низким пластовым давлением плотность комплексного органического растворителя изменяют для вытеснения пластовых вод вглубь пластов. Для увеличения объемов добычи нефтей одновременно с обработкой комплексным органическим растворителем призабойных зон всех добывающих скважин осуществляют глушение им всех нагнетательных скважин и вытесняют нефти в сторону добывающих скважин, при этом чередуют объемы закачки в нагнетательные скважины комплексного органического растворителя с объемами закачиваемых вслед за ним пластовых вод в соотношениях от 1:1 в начале закачки в пласты и до не менее 1:20 в конце по мере увеличения общего объема закачки в пласты этого состава. 2 ил.
Изобретение относится к лазерной технике, а конкретнее к жидкостным охлаждающим средам (теплоносителям) (ЖТС) твердотельных лазеров (например, неодимовых или гольмиевых), являющимся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера. Оно может применяться везде, где разрабатываются или применяются твердотельные лазеры, имеющие жидкостную систему охлаждения с фильтрацией УФ-излучения лампы накачки. Сущность изобретения заключается в том, что ЖТС содержит 2-окси-4-(С7-С9-алкил)оксибензофенон, бутиловый спирт и октан при следующем содержании компонентов, мас.%: 2-окси-4-(С7-С9)алкоксибензофенон 0,3-0,6 бутиловый спирт 35-45, октан - остальное. Технический результат заключается в обеспечении возможности увеличения ресурса работы лазера.
Изобретение относится к способу ограничения мощного лазерного импульсно-периодического излучения и может найти применение для защиты органов зрения и чувствительных приемников излучения от разрушающего действия высокоинтенсивного падающего излучения. Способ реализуется лимитером на основе суспензий наночастиц, обладающих нелинейно-оптическими свойствами, в прозрачных жидких матрицах, содержащих поверхностно-активное вещество. Ограничение импульсно-периодического лазерного излучения производят с частотой повторения до 10 Гц, при этом соотношение вязкости (η) и молекулярной массы (М) жидкостной компоненты лимитера определяется эмпирической формулой γ=Кη/М при значении 1<γ<10 и К=10 Да/Пз. Технический результат заключается в обеспечении возможности использования способа ограничения лазерного излучения без изменения оптических свойств лимитера под действием мощного лазерного излучения.

Изобретение относится к области защиты человека и окружающей среды от ионизирующих излучений, а именно к устройствам наблюдения с защитой наблюдателей

 


Наверх