Патенты автора Логачёва Алла Игоревна (RU)

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе молибдена, обладающим высокой прочностью, и может быть использован для изготовления изделий, подвергающихся в процессе эксплуатации в условиях вакуума или среды, не содержащей кислород, нагреву до высоких температур, в электронной, электротехнической отраслях промышленности, атомной энергетике, авиационной и космической технике. Жаропрочный сплав на основе молибдена содержит, мас.%: тантал 0,2-0,9, вольфрам 0,1-0,9, по меньшей мере один из группы элементов: железо, кобальт, никель в сумме 0,01-0,03, цирконий 0,1-0,3, гафний 0,2-0,9, углерод 0,01-0,05, кислород не более 0,003, молибден – остальное. Сплав характеризуется высокой прочностью при температурах до 1600°С при сохранении высокой пластичности при комнатной температуре. 2 табл., 2 пр.

Изобретение относится к обработке металлов давлением и может быть использовано для изотермического обратного выдавливания поковок в виде полых тел, в частности тел вращения, например полусфер, стаканов, гильз из различных сплавов. Штамп содержит пуансон, матрицу с полостью и направляющую цилиндрическую обойму, которая охватывает наружную поверхность матрицы с радиальным зазором между ними. Зазор обеспечивает в процессе изотермической штамповки перемещение обоймы относительно матрицы без заклинивания и не превышает величину допуска на неравномерность зазора между наружной поверхностью пуансона и стенками полости матрицы. Пуансон установлен в посадочном отверстии обоймы. Обойма с пуансоном и матрица имеют возможность установки в муфели штампового блока с зазорами в осевом и радиальном направлениях. Упомянутые зазоры сохраняются при нагреве до температуры изотермической штамповки. В результате обеспечивается возможность увеличения габаритных размеров поковок в плане и по высоте и упрощение конструкции штамповой оснастки. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к изготовлению металлических изделий селективным лазерным спеканием. Установка содержит герметичную камеру, вакуумную систему, блок подачи инертного газа, систему очистки инертного газа, систему циркуляции инертного газа, систему водоохлаждения инертного газа, загрузочный бункер для порошкового материала, опору для поддержки формируемого изделия, выравниватель, лазерную систему для спекания порошкового материала, систему охлаждения лазерной системы, систему управления, дозатор порошкового материала и вакуумное шлюзовое устройство, соединяющее загрузочный бункер и дозатор между собой. Загрузочный бункер, вакуумное шлюзовое устройство, дозатор и лазерная система расположены внутри герметичной камеры в верхней ее части, опора для поддержки формируемого изделия расположена в нижней части герметичной камеры и состоит из подогреваемого основания и подложки. Герметичная камера оснащена клапаном избыточного давления и по меньшей мере двумя вентиляционными отверстиями, которые соединены с блоком подачи инертного газа, системой циркуляции инертного газа, вакуумной системой. Обеспечивается улучшение эксплуатационных характеристик изготавливаемых изделий, снижение вероятности образования дефектов в процессе изготовления. 2 н. и 14 з.п. ф-лы, 2 ил.

Изобретение относится к получению прутковых заготовок для центробежного плазменного распыления из интерметаллидного сплава. В аттритор засыпают смесь порошков для получения интерметаллидного сплава, создают защитную среду, проводят механохимический синтез в высокоэнергичном режиме со скоростью вращения вала мешалки 20-600 мин-1 при одновременном охлаждении аттритора с обеспечением получения дисперсной микроструктуры сплава с размером зерен менее 10 мкм. После окончания механохимического синтеза аттритор переводят режим работы со скоростью вращения вала мешалки 30-40 мин-1 и пересыпают полученный порошок сплава в герметично соединенный с аттритором резервуар, из которого под действием вибрации загружают в капсульную оснастку. Капсульную оснастку с порошком помещают в вакуумную камеру и герметично заваривают с применением электронно-лучевой сварки, после этого помещают в газостат и проводят горячее изостатическое прессование, оснастку вынимают из газостата и механическим путем снимают элементы оснастки с получением прутковой заготовки. Обеспечивается повышение пластичности, кратковременная прочность и однородность химического состава. 6 з.п. ф-лы, 1 табл.

Группа изобретений относится к получению герметичных капсул с металлическим порошком для горячего изостатического прессования (ГИП) изделий. Готовят транспортные бункеры с порошком и стыкуют их с вакуумированными загрузочным узлом и узлом нагрева порошка. Открывают приемные затворы транспортных бункеров и вакуумируют. Пересыпают порошок в загрузочный узел. Подают в загрузочный узел инертный газ. Нагревают заполненный загрузочный узел и одновременно при вакуумировании нагревают капсулу. Создают в бункерах вакуум и выравнивают его во всем объеме установки, затем осуществляют подачу порошка с одновременным его виброуплотнением и дегазацией в нагретую капсулу. Прекращают виброуплотнение и нагревание капсулы. Производят механическое сжатие засыпной горловины над уровнем засыпанных в капсулу гранул и создают герметичное сварное соединение в месте контакта механизма зажима и герметизации горловины капсулы на участке сжатой засыпной горловины. Обеспечивается повышение качества и прочности ГИП изделий. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к получению сферического порошка из интерметаллидного сплава. Способ включает оплавление торца вращающейся вокруг горизонтальной оси цилиндрической заготовки из интерметаллидного сплава в камере распыления плазменной струей дугового плазмотрона с обеспечением центробежного распыления расплавленных частиц и их затвердевания при полете в среде рабочих газов, при этом производят забор горячей смеси рабочих газов из камеры распыления, охлаждают ее и подают охлажденную смесь рабочих газов в камеру распыления с обеспечением охлаждения расплавленных частиц, причем затвердевшие частицы собирают в приемном бункере. Охлажденную смесь рабочих газов подают в камеру распыления с регулируемой интенсивностью и направленностью посредством формирователей охлаждающих потоков, выполненных в виде по меньшей мере двух осевых спрейеров разного диаметра, обеспечивающих перехлестывание исходящих из спрейеров охлаждающих потоков с образованием зоны охлаждения расплавленных частиц с регулируемым температурным градиентом. Обеспечивается снижение температуры в камере распыления до необходимых нам значений, увеличение эффективности регулирования скорости охлаждения гранул. 1 ил.

Изобретение относится к области металлургии, а именно к производству жаростойких порошковых сплавов на основе интерметаллида NiAl, и может быть использовано в авиационной, космической и энергетической отраслях для изготовления теплонагруженных деталей, работающих в условиях высоких температур и испытывающих относительно невысокие механические нагрузки. Гранулируемый сплав на основе интерметаллида NiAl содержит, мас. %: алюминий 24,5-29,9; кобальт 5,27-6,35; хром 5,98-7,3; гафний 1,0-1,2; бор 0,03-0,04; никель - остальное. Сплав характеризуется высокой жаропрочностью и пластичностью. 4 табл., 3 пр.

Изобретение относится к области авиации, ракетостроения и космонавтики, в частности к лейнерам, которые используются в баллонах высокого давления. Способ изготовления тонкостенного бесшовного лейнера для композитных баков из титановых сплавов включает засыпку гранул из высокопрочного титанового сплава в металлическую капсулу. После заполнения гранулами капсулы процесс виброуплотнения и нагревания прекращают, капсулу с находящимися в ней гранулами заваривают электронным лучом и извлекают на воздух, а затем проверяют на герметичность. После завершения проверки вакуумированные гранулы в капсуле подвергают горячему изостатическому прессованию, по окончании которого полученную в результате компактированную капсулу заготовки лейнера опускают в емкость с раствором кислот для растворения внешней и внутренней оболочек, по окончании которого тонкостенный бесшовный лейнер из высокопрочного титанового сплава извлекают из раствора кислот и проверяют на соответствие геометрическим параметрам. Тонкостенный бесшовный лейнер для композитных баков из титановых сплавов содержит цилиндрическую обечайку, два днища, которые расположены на одной оси и сопряжены так, что цилиндрическая обечайка расположена между двумя днищами лейнера. Два фланца, каждый из которых сопряжен с одним из днищ лейнера. При этом на центральной оси каждого фланца имеется отверстие, цилиндрическая обечайка, днища и фланцы сопряжены в единую, монолитную и равнопрочную конструкцию без сварных швов и соединений. Техническим результатом является повышение надежности, уменьшение массовых характеристик, увеличение прочности и срока эксплуатации при повышении сложности конфигурации и минимальной механической обработке лейнера. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к получению титановых гранул. Осуществляют вращение цилиндрической заготовки вокруг горизонтальной оси, оплавляют торец заготовки плазменной струей дугового плазмотрона с обеспечением распыления расплавленных частиц под действием центробежных сил и затвердевания частиц при полете в среде рабочих газов. Горячую смесь рабочих газов забирают из камеры распыления, далее направляют в фильтр первичной очистки, далее направляют в фильтр сверхтонкой очистки, после чего очищенную смесь рабочих газов направляют через теплообменник в компрессор, оттуда ее направляют в ресивер, после чего смесь рабочих газов направляют в охладитель смеси рабочих газов, после охлажденную смесь рабочих газов подают в формирователь охлаждающего потока смеси рабочих газов и далее формируют поток смеси охлажденных рабочих газов путем направления его через формирователь охлаждающего потока смеси рабочих газов в камеру распыления с обеспечением охлаждения расплавленных частиц потоком охлажденной смеси рабочих газов, после чего предварительно охлажденные частицы гранул ссыпают в приемный бункер. Обеспечивается снижение температуры в камере распыления, увеличение скорости охлаждения гранул, улучшение теплоотвода с внутренних поверхностей приемной трубы и приемного бункера. 1 ил.

Изобретение относится к получению титановых гранул. Устройство содержит рабочую камеру, выполненную с возможностью заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки с обеспечением центробежного распыления капель расплавленного материала, компрессор с трубопроводами для непрерывной откачки инертного рабочего газа из рабочей камеры и соединенный с рабочей камерой приемный бункер для сбора гранул. При этом рабочая камера выполнена с возможностью подачи откаченного инертного рабочего газа в плазмотрон. Устройство содержит последовательно соединенные фильтр первичной очистки, фильтр сверхтонкой очистки, холодильную установку и компрессор, выполненные с возможностью охлаждения и очистки откаченного из камеры распыления инертного рабочего газа, а также формирователь охлаждающего газового потока, выполненный с возможностью подачи в камеру распыления навстречу распыленным каплям расплавленного материала заготовки потока охлажденного и очищенного инертного рабочего газа, откаченного из камеры распыления. Обеспечиваются снижение температуры в камере распыления, увеличение скорости охлаждения гранул и ссыпания их в приемный бункер. 12 з.п. ф-лы, 1 ил.

Группа изобретений относится к получению титановой дроби. Оплавляют торец вращающейся вокруг горизонтальной оси цилиндрической титановой заготовки плазменной струей плазмотрона с обеспечением центробежного распыления расплавленных частиц дроби в камере распыления и затвердевания их в среде рабочих газов, проводят сбор дроби из камеры распыления через приемную трубу в приемный бункер. Горячую смесь рабочих газов из камеры распыления направляют в теплообменник, далее в фильтр, затем в компрессор, после чего в ресивер и в охладитель с получением охлажденной смеси рабочих газов, которую подают в приемный бункер и через приемную трубу подают в виде восходящего потока навстречу движению расплавленных частиц титановой дроби в камеру распыления и обеспечивают охлаждение полученной титановой дроби. Предложено устройство для реализации упомянутого способа получения титановой дроби. Обеспечивается снижение температуры в камере распыления, увеличение скорости охлаждения дроби в процессе распыления и ссыпания ее в приемный бункер, улучшение теплоотвода с внутренних поверхностей приемной трубы и приемного бункера. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии цветных металлов, в частности к производству слитков жаропрочных сплавов на основе титана. Лигатура содержит, мас.%: вольфрам 28-32, алюминий 28-32, титан остальное. Изобретение обеспечивает равномерное распределение вольфрама и других легирующих элементов по сечению и длине слитка, что позволяет избежать ликвации по химическому составу и способствует улучшению прочностных и жаростойких характеристик получаемого слитка титанового сплава, а также снижает угар легирующих элементов в процессе выплавки слитка. 1 табл.

Изобретение относится к ракетно-космической технике и может быть использовано в ферменных конструкциях. Силовой элемент ферменной конструкции содержит один узел пересечения, два полых соединенных и сопряженных между собой в узле пересечения цилиндрических диагональных стержня, узел пересечения в виде полого и замкнутого по торцам центрального цилиндрического стержня с отверстием. Одним торцом диагональные цилиндрические стержни сопряжены с центральным цилиндрическим стержнем бесшовным образованием из одного материала. Центральные оси диагональных и центрального цилиндрического стержня находятся в одной плоскости, центральная ось диагональных цилиндрических стержней расположена под одним углом к центральной оси узла центрального полого цилиндрического стержня. Капсула для изготовления силового элемента ферменной конструкции содержит внутреннюю оболочку из двух внутренних цилиндрических труб диагональных стержней, внутреннего стакана центрального стержня, двух ограничителей, наружную оболочку из двух внешних труб диагональных стержней с межстаканным кольцом, двух межтрубных колец, одного ограничителя, внешнего дна центрального стержня с одной засыпной горловиной с пробкой. Изобретение позволяет уменьшить массу конструкции и увеличить однородность и прочность конструкции. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в системах разделения для соединения двух или нескольких объектов с последующим их отделением. Исполнительный элемент замкового устройства с безударным разъединением конструкции, имеющий форму полого тела вращения и изготовленный из материала с эффектом памяти формы, выполнен в виде втулки с прорезями и сквозными отверстиями. Внутренняя полость втулки разделена на две части вкладышем. С левого торца втулки образована камера нагревателя с наружной резьбой, с правого торца установлена разрезная гайка. Способ изготовления исполнительного элемента заключается в получении исходной заготовки в виде цилиндрического прутка из сплава с эффектом памяти формы, при этом заготовка выполнена из гранул сплава с эффектом памяти формы методом гранульной металлургии с использованием горячего изостатического прессования и последующей радиально-сдвиговой деформации. Техническим результатом изобретения является повышение надежности срабатывания замкового устройства. 2 н. и 12 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области энергетического машиностроения, а именно к обработке заготовок деталей, выполненных из жаропрочных никелевых сплавов, перед их соединением в паяно-сварную конструкцию, работающую в интервале температур от -253°C до +900°С
Изобретение относится к области металлургии титановых сплавов и может быть использовано для деталей и узлов ракетных и авиационных двигателей, работающих под высокими нагрузками при температурах до 750-800°С

 


Наверх