Патенты автора Лисовая Екатерина Валериевна (RU)

Изобретение относится к пищевой промышленности, а именно к способу получения концентрата каротиноидов из растительного сырья. Способ получения концентрата каротиноидов из растительного сырья включает его сушку, измельчение, экстрагирование органическим растворителем, фильтрование полученного экстракта и удаление из экстракта органического растворителя под вакуумом, согласно изобретению в качестве растительного сырья берут выжимки томатов, перед сушкой выжимки томатов обрабатывают в электромагнитном поле СВЧ при темпе нагрева 0,4-0,6°С/с до достижения температуры 40-45°С, сушку проводят при температуре 40-45°С в зоне ИК-излучения до влажности 15-20%, измельчают до размера частиц 0,8-1,0 мм, смешивают с раствором, содержащим целлюлазу, ксиланазу и протеазу в количестве, обеспечивающем соответственно 150, 100 и 50 ед. активности на 1 г сухого вещества высушенных выжимок томатов, при температуре 40-45°С, рН 5,4-5,6 и постоянном перемешивании в течение 1-1,5 ч при соотношении высушенные выжимки томатов : раствор, содержащий ферменты, равном (1:12)÷(1:15), из полученной ферментированной массы отделяют осадок путем фильтрования под вакуумом, нагревают до температуры 83-85°С в течение 5-7 мин, сушат при температуре 40-45°С под вакуумом до влажности 8-10%, охлаждают до температуры 25-30°С, экстрагирование органическим растворителем осуществляют в три стадии при соотношении измельченные высушенные выжимки томатов : органический растворитель (масс./об.), равном (1:10)÷(1:12), и постоянном перемешивании в течение 45-60 мин на каждой стадии, при этом в качестве органического растворителя берут ацетон, фильтрование экстрактов, полученных после каждой стадии экстрагирования, проводят под вакуумом и экстракты объединяют. Реализация заявляемого способа позволяет получить высокий выход каротиноидов 89,7-90,2%. 2 пр.

Изобретение относится к масложировой промышленности и может быть использовано для получения пищевого фосфолипидного продукта, применяемого в производстве продуктов питания, в том числе функциональных и специализированных. Предложен способ получения пищевого фосфолипидного продукта, включающий смешивание сырых растительных фосфолипидов с органическим растворителем, разделение фаз на раствор нейтральных липидов в органическом растворителе и фосфолипиды, последующую сушку фосфолипидов под вакуумом, при этом смешивание осуществляют в три стадии, на первой стадии сырые растительные фосфолипиды и органический растворитель смешивают при соотношении сырые растительные фосфолипиды - органический растворитель (по массе) (1:6) - (1:7) и температуре 35-40°С путем интенсивного перемешивания в течение 5-7 минут, а после второй и третьей стадий смешивания фосфолипидов с органическим растворителем полученную смесь обрабатывают путем ультразвукового воздействия интенсивностью 140-180 Вт/см2 в течение 1 минуты с дискретностью 10 секунд при общем времени ультразвукового воздействия на каждой стадии 3-5 минут, при этом смешивание на второй и третьей стадиях осуществляют путем интенсивного перемешивания в течение 5-7 минут, а разделение фаз на раствор нейтральных липидов в органическом растворителе и фосфолипиды после первой стадии смешивания и после обработки смеси, полученной на второй и третьей стадиях смешивания, путем ультразвукового воздействия осуществляют под вакуумом. Изобретение позволит сократить продолжительность технологического процесса на 9,5 часов, увеличить выход целевого продукта на 1,6-1,7% и повысить его качество. 1 табл., 2 пр.

Изобретение относится к масложировой промышленности. Предложен способ получения пищевого фосфолипидного продукта, включающий пять стадий смешивания сырых растительных фосфолипидов с органическим растворителем, разделение фаз на раствор нейтральных липидов в органическом растворителе и фосфолипиды под вакуумом на каждой стадии и последующую сушку фосфолипидов под вакуумом, причем перед первой стадией смешивания сырые растительные фосфолипиды обрабатывают при 35-40°С импульсным электрическим полем с напряженностью 6-7 кВ/см, количеством единичных импульсов 72000 в течение 7-9 мин, на первой стадии обработанные импульсным электрическим полем сырые растительные фосфолипиды и органический растворитель смешивают при соотношении сырые растительные фосфолипиды-органический растворитель (по массе) (1:6)÷(1:7) путем интенсивного перемешивания в течение 5-7 мин, а после второй, третьей, четвертой и пятой стадий смешивания фосфолипидов и органического растворителя полученную смесь обрабатывают импульсным электрическим полем с напряженностью 5 кВ/см и количеством единичных импульсов 16800 в течение 1-2 мин. Изобретение обеспечивает увеличение выхода целевого продукта и повышение его качества. 1 табл., 2 пр.

Изобретение относится к пищевой промышленности, а именно к производству сдобных хлебобулочных изделий. Способ производства булочки сдобной для школьного питания включает замес теста из муки хлебопекарной пшеничной высшего сорта, дрожжей хлебопекарных прессованных, соли пищевой, сахара, рафинированного дезодорированного высокоолеинового подсолнечного масла, воды, ванилина и эмульсии, содержащей лецитин, брожение теста, его разделку на тестовые заготовки, расстойку и выпечку тестовых заготовок. Эмульсию готовят смешиванием масляной фазы, представляющей собой раствор бета-каротина концентрацией 0,25-0,30% и витамина Е концентрацией 0,8-1,0% в рафинированном дезодорированном высокоолеиновом подсолнечном масле, водной фазы, представляющей собой водный раствор сульфата железа концентрацией 0,15-0,20% и лецитина. Эмульсию готовят в зоне ультразвукового воздействия с мощностью 360-400 Вт в течение 10-15 мин при температуре 35-37°С. При этом соотношение масляной и водной фаз составляет 5:95 (по массе). Рафинированное дезодорированное высокоолеиновое подсолнечное масло вносят в количестве 5-7% к массе муки. В качестве лецитина берут соевый или подсолнечный лецитин, содержащий не менее 97% собственно фосфолипидов, в том числе не менее 75% фосфатидилхолинов, в количестве 2-4% к общей массе масляной и водной фаз. При этом эмульсию вносят в количестве 10-15% к массе муки. Изобретение позволяет получить готовый продукт с высоким качеством и максимальным сохранением термолабильных микронутриентов. 1 табл., 3 пр.

Изобретение относится к консервной промышленности и может быть использовано при производстве сокосодержащих напитков. Сокосодержащий напиток для школьного питания состоит из сока фруктового, пюре из топинамбура, полученного путем подготовки клубней топинамбура, их грубого измельчения, обработки измельченного сырья в электромагнитном поле сверхвысоких частот, последующего протирания обработанного сырья, фруктозы, эмульсии и воды питьевой. Эмульсию готовят путем смешивания в зоне ультразвукового воздействия с мощностью 360-400 Вт в течение 10-15 минут при 35-37°С масляной фазы, представляющей собой раствор витамина D концентрацией 0,25-0,30% в рафинированном дезодорированном высокоолеиновом подсолнечном масле, водной фазы, представляющей собой водный раствор витамина С концентрацией 0,10-0,15%, карбоната кальция концентрацией 3,8-4,0% и сульфата магния концентрацией 1,8-2,0%, при соотношении масляной и водной фаз 5:95 (по массе) и лецитина. При этом лецитин выбирают из соевого или подсолнечного лецитина, содержащего не менее 97% собственно фосфолипидов, в том числе не менее 75% фосфатидилхолинов, в количестве 2-4% к общей массе масляной и водной фаз. Причем компоненты для напитка используют при следующем соотношении, мас. %: сок фруктовый - 25-30, пюре из топинамбура - 10-15, эмульсия - 15-20, фруктоза - 7-9, вода питьевая - остальное. Изобретение позволяет получить сокосодержащий напиток для школьного питания с высоким качеством, максимальным сохранением содержащихся в его составе термолабильных микронутриентов: витаминов С и D. 1 табл., 3 пр.

Изобретение относится к пищевой промышленности. Способ производства функционального сдобного хлебобулочного изделия включает приготовление теста путем смешивания пшеничной муки высшего сорта, воды, соли, дрожжей, сахара, жирового компонента, эмульгатора и добавки в виде порошка, брожение теста, его разделку на тестовые заготовки, расстойку и выпечку тестовых заготовок. В качестве жирового компонента берут рафинированное дезодорированное рапсовое масло в количестве 10-12% к массе муки. В качестве эмульгатора - жидкий рапсовый лецитин в количестве 2-3% к массе муки. В качестве добавки - порошок, полученный из выжимок тыквы путем их обработки в электромагнитном поле сверхвысокой частоты с частотой 2450 МГц при темпе нагрева до температуры 45-50°С, равном 0,4-0,5°С/с, последующей сушки, охлаждения и измельчения. Количество порошка составляет 10-12% к массе муки. Изобретение позволяет получить функциональное сдобное хлебобулочное изделие с высоким содержанием антиоксидантов и пищевых волокон. 2 пр., 1 табл.

Использование: для определения кислотного числа жидкого лецитина. Сущность изобретения заключается в том, что осуществляют отбор пробы лецитина, последовательное смешивание пробы лецитина с четыреххлористым углеродом и водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 с получением смеси, помещение полученной смеси в датчик импульсного ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа по уравнению, при этом смешивание пробы лецитина с четыреххлористым углеродом осуществляют при соотношении по массе лецитин/четыреххлористый углерод, равном (1:6)÷(1:6,5), а смешивание водного раствора гидроксида натрия осуществляют в течение 30-40 секунд при соотношении по массе лецитин/водный раствор гидроксида натрия, равном (1:1,2)÷(1:1,3), при этом для вычисления значения кислотного числа используют уравнение: К.ч.=3,6567+0,8233⋅Ам. Технический результат: обеспечение возможности повышения точности результатов анализа. 1 ил., 1 табл.

Изобретение относится к аналитической химии, а именно к практическому применению метода ядерного магнитного резонанса (ЯМР) для определения кислотного числа (К.ч.) жидкого соевого лецитина и может быть использовано в масложировой промышленности. Способ определения кислотного числа жидкого соевого лецитина включает отбор пробы жидкого соевого лецитина, последовательное смешивание пробы с четыреххлористым углеродом и водным раствором гидроксида натрия концентрацией 0,9-1,1 моль/дм3 с получением смеси, помещение полученной смеси в датчик импульсного ЯМР-анализатора, измерение амплитуды сигналов ядерно-магнитной релаксации протонов образовавшегося мыла (Ам) и вычисление значения кислотного числа по уравнению, при этом смешивание жидкого соевого лецитина с четыреххлористым углеродом осуществляют при соотношении по массе жидкий соевый лецитин - четыреххлористый углерод, равном (1:3)÷(1:3,5), а смешивание водного раствора гидроксида натрия осуществляют при соотношении по массе жидкий соевый лецитин - водный раствор гидроксида натрия, равном (1:0,5)÷(1:0,6), при этом для вычисления значения кислотного числа используют уравнение: К.ч.=7,1283+0,7908⋅Ам. Техническим результатом является повышение точности результатов анализа. 1 табл., 1 ил.

Изобретение относится к масложировой промышленности и может быть использовано для определения содержания олеиновой кислоты в оливковом масле
Изобретение относится к анализу в масложировой промышленности

Изобретение относится к анализу в масложировой промышленности

Изобретение относится к анализу в масложировой промышленности

 


Наверх