Патенты автора Скачков Владимир Михайлович (RU)

Изобретение относится к способу получения синтетического цеолита. Способ включает автоклавную обработку исходного раствора, содержащего алюминатный раствор глиноземного производства, фильтрацию и сушку полученного продукта. В качестве алюминатного раствора глиноземного производства используют алюминатный раствор, полученный из бокситов по схеме Байера. Исходный раствор дополнительно содержит жидкое натриевое стекло и известь, отожженную при температуре 1200-1400°C, при следующем соотношении компонентов (масс.%): алюминатный раствор, полученный из бокситов по схеме Байера, 76,92-86,2; жидкое натриевое стекло 6,9-12,82; известь, отожженная при температуре 1200-1400°C, 6,9-10,26. Автоклавную обработку осуществляют при температуре 160-170°С, при давлении 5,0-6,1 атм со скоростью перемешивания 100-110 об/мин в течение 3-6 часов. Технический результат состоит в обеспечении способа переработки алюминатных растворов глиноземного производства с получением синтетических алюмосиликатных цеолитов кальция и натрия (цеолитов). Предлагаемый способ позволяет получить продукт высокого качества, поскольку его кристалличность составляет 100%. Кроме того предлагаемый способ позволяет сократить длительность процесса и значительно снизить температуру прокаливания. Побочный продукт, получаемый в предлагаемом способе, то есть фильтрат, содержит натрий и алюминий, и его можно повторно использовать при выщелачивании боксита или для изготовления реакционных растворов. Это делает способ экологически благоприятным. Промывные воды, которые являются слегка щелочными, можно повторно использовать для получения растворов реагентов. 1 ил., 2 пр.

Группа изобретений относится к области медицинских и фармацевтических биологически активных материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, реконструкции и замещении поврежденных участков. Предлагается биомедицинский материал на основе гидроксиапатита, содержащий кислородное соединение титана, при этом в качестве кислородного соединения титана материал содержит диоксид титана или нестехиометрический диоксид титана, полученный при сжигании металлического титана при температуре 600-800°С на воздухе, при следующем соотношении компонентов (мас.%): гидроксиапатит Ca10(PO4)6(OH)2 85÷90, диоксид титана TiO2 (рутил) или нестехиометрический диоксид титана TiO1,9 (рутил) 15÷10, при этом частицы диоксида титана TiO2 или нестехиометрического диоксида титана TiO1,9 размером не более 0,5 мкм распределены равномерно по всему объему матрицы из гидроксиапатита. Способ получения указанного выше биомедицинского материала включает смешивание порошков исходных компонентов, взятых в соотношении (мас.%): гидроксиапатит Ca10(PO4)6(OH)2 85-90; диоксид титана TiO2 (рутил) или нестехиометрический диоксид титана TiO1,9 (рутил) 15-10, прессование при давлении 20-30 МПа с последующей термообработкой при температуре 1000-1010°С в течение 0,5-1,0 часа. Биомедицинский материал обладает повышенной механической твердостью относительно прототипа наряду с сохранением высокой биосовместимости с костной тканью. 2 н.п. ф-лы, 4 пр., 1 ил.

Изобретение относится к производству силикатных материалов, в частности синтетического цеолита, и может быть использовано для производства сорбентов и катализаторов. Способ получения синтетического алюмосиликатного цеолита включает гидротермальную обработку исходной смеси, которая содержит источник оксида алюминия, источник оксида натрия, жидкое натриевое стекло, оксид кальция (известь). В качестве источника оксида алюминия и в качестве источника оксида натрия исходная смесь содержит оборотный раствор глиноземного производства. При этом исходная смесь имеет следующее соотношение компонентов, масс.%: оборотный раствор глиноземного производства 94-95,2; жидкое натриевое стекло 1,6-2,2; оксид кальция 3,2-3,8. Технический результат изобретения заключается в разработке способа получения синтетического алюмосиликатного цеолита, позволяющего упростить процесс получения и значительно сократить его длительность. 1 ил., 2 пр.

Изобретение относится к получению материала для костных имплантатов, используемых в ортопедической хирургии при восстановлении и лечении костной ткани. Способ получения композиционного материала для костных имплантатов включает получение исходной порошковой смеси, содержащей (мас.%): гидроксиапатит – 75-80; оксид циркония – 5-10; кремниевую кислоту – 15-16; прессование полученной смеси при давлении 20-25 МПа и последующее спекание при температуре 1000-1050°С в течение 1,0-1,5 ч. При этом размер частиц исходной смеси равен не более 5 мкм. Способ обеспечивает получение композиционного материала для костных имплантатов, обладающего высокой пористостью наряду с достаточно высокими значениями твердости, что обеспечит высокую биосовместимость с костной тканью и пониженную скорость биодеградации при восстановлении костной ткани. 2 ил., 3 пр.

Изобретение относится к металлургии, в частности к легированию алюминия тугоплавкими редкими металлами, конкретно к легированию алюминия танталом. Способ легирования алюминия танталом включает предварительное получение расплава алюминия с введением в расплав активного реагента с последующей выдержкой при перемешивании, при этом в качестве активного реагента используют смесь, состоящую из компонентов, взятых в следующем соотношении, мас.%: 40-45 KCl, 35-40 NaF, 10-15 AlF3, 5-10 Ta2O5, причем перед введением в расплав смесь измельчают с одновременным перемешиванием и сушат при температуре 150-160оС. Изобретение направлено на упрощение технологии легирования алюминия танталом за счет использования в качестве исходных компонентов доступного коммерчески используемого сырья. 3 пр., 3 ил.

Изобретение относится к способу изготовления гранул из биоактивного материала на основе гидроксиапатита или фторапатита, пропитанного желатином, которые могут найти применение для восстановления костных тканей. Способ включает обработку порошка кристаллического фторапатита состава Ca5(PO4)3F или порошка кристаллического гидроксиапатита состава Са10(РO4)6(ОН)2 водным раствором желатина с последующей сушкой. Согласно изобретению слой порошка гидроксиапатита или фторапатита, равномерно распределенный по поверхности чаши вибрационной установки, орошают 13-17%-ным водным раствором желатина при массовом соотношении порошка гидроксиапатита или порошка фторапатита и 13-17%-ного водного раствора желатина, равном 3-5:1, и осуществляют обработку полученной смеси в условиях вибрации с частотой 200-300 с-1 в течение 10-15 мин. Технический результат: простой способ получения гранул, имеющих близкий к костной ткани состав. 3 ил., 2 пр.
Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Осуществляют автоклавную обработку красного шлама при температуре 230-250°С и давлении 27-50 МПа в присутствии восстановителя и 30%-ного раствора гидроксида натрия при введении гидроксида кальция, содержание которого составляет 2,0-2,5 мас.% по СаО от массы исходного шлама. В качестве восстановителя используют гранулы алюминия в количестве 10-25 мас.% от массы исходного шлама. После этого охлаждают, разбавляют дистиллированной водой при температуре 80-90°С до получения отношения Ж:Т = (10-11):1 и фильтруют. Изобретение обеспечивает высокую конверсию гематита в магнетит. 2 пр.

Изобретение относится к области специальной металлургии и может быть использовано для производства алюминиевых композиционных сплавов, применяемых в качестве высокопрочных композиционных материалов в авиационной, автомобильной и других отраслях промышленности. Способ получения композиционного материала на основе алюминия или его сплава, легированного титаном, включает введение титана в расплав алюминия или его сплава и последующую механическую обработку расплава при температуре плавления алюминия, при этом порошок титана вводят в расплав в количестве 2-5 мас.% от массы расплава путем инжекции углекислым газом при избыточном давлении не более 0,1 атм со скоростью потока 1–2 ндм3∙мин-1, а механическую обработку осуществляют отстойным центрифугированием при частоте вращения 1000-2500 об/мин в течение 10-12 мин. Изобретение направлено на повышение твердости композиционного материала на основе алюминия за счет увеличения содержания легирующего компонента. 3 пр., 1 табл., 1 ил.

Изобретение относится к области биологически активных фармацевтических и медицинских материалов и раскрывает биоматериал на основе гидроксиапатита, модифицированный оксидом циркония и оксидом алюминия, взятых в определенных соотношениях. Биоматериал может быть использован в хирургии при восстановлении и лечении костной ткани, в ортопедической стоматологии, а также в качестве носителя биологически активных веществ. 2 ил., 2 пр.
Изобретение относится к области цветной металлургии и может быть использовано при переработке бокситов с извлечением основных макрокомпонентов – алюминия и железа. Переработку бокситов осуществляют путем автоклавной обработки пульпы в присутствии гидроксида натрия и активного агента. В качестве активного агента используют механическую смесь порошков металлов, состоящую из, %: железо – 49-51, алюминий – 24-26, магний – 24-26, в количестве 15-20 мас.% от массы боксита. Автоклавную обработку осуществляют при соотношении Ж:Т 8÷9:1, давлении 15÷16 МПа и температуре 210÷220°. Полученную пульпу охлаждают до 70÷100°°С и добавляют дистиллированную воду при температуре 80÷90°С до получения Ж:Т 17÷18:1, затем перемешивают, охлаждают и фильтруют. Способ обеспечивает высокое извлечение алюминия в раствор с одновременным переводом гематита в магнетит, что позволит получать красный шлам с высоким содержанием магнетита, обладающего высокими магнитными свойствами. При этом процесс проводят в одну стадию при пониженных значениях температуры и давления. 2 пр.

Изобретение относится к медицине. Биоматериал на основе гидроксиапатита, содержащий фторид кальция и диоксид циркония, причем в качестве гидроксиапатита он содержит гидроксиапатит, полученный путем химического осаждения из водных растворов. Все компоненты взяты при определенном соотношении. Гранулированный состав всех компонентов составляет 20-40 мкм. Изобретение позволяет использовать композиционный биоматериал на основе гидроксиапатита для замены и восстановления костной ткани при различных костных патологиях, изготовления костных имплантатов и замещения дефектов, который сохраняет остеотропное поведение в биологических средах за счет его высокой биосовместимости к минерализованным костным тканям человека. 2 ил., 2 пр.
Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано в терапии при лечении воспалительных заболеваний пародонта. Предлагаемое средство для лечения пародонтита содержит кремнийорганический глицерогидрогель, гидроксиапатит и активную добавку, причем в качестве активной добавки оно содержит пептид ZP-2 (THR NLE NLE ALA SER HIS TYR LYS GLN HIS CYS PRO) при следующем соотношении компонентов, мас.%: гидроксиапатит 3-4, пептид ZP-2 (THR NLE NLE ALA SER HIS TYR LYS GLN HIS CYS PRO) 0,001-0,005, глицерогидрогель состава Si(C3H7O3)4·6C3H8O3·28H2O – остальное до 100. Предлагается также способ лечения пародонтита, включающий профессиональную гигиеническую обработку полости рта, антисептическую терапию и местную медикаментозную терапию, при этом местную медикаментозную терапию осуществляют путем введения в пародонтальные карманы вышеуказанного средства в количестве 1,5-2,0 г в каждый пародонтальный карман в области больного зуба с повторением процедуры пять раз через один день, при этом средство из пародонтальных каналов не удаляют. Использование группы изобретений обеспечивает достижение устойчивого эффекта лечения пародонтита, в том числе в тяжелой степени болезни и в стадии обострения. 2 н.п. ф-лы, 3 пр.

Изобретение относится к фармацевтической промышленности, а именно к биоактивному покрытию для восстановления костных тканей. Биоактивное покрытие для восстановления костных тканей, содержащее гидроксиапатит или фторапатит с размером частиц не более 10 мкм и 5-10 масс.% водный раствор желатина, взятые в определенных соотношениях. Вышеописанное покрытие максимально близкого состава к костной ткани обладает повышенной адгезионной прочностью (прочностью на разрыв), невысокой пористостью, обеспечивающей высокую микротвердость на поверхности имплантата или поврежденной ткани, при этом с высокой биодеградацией. 3 ил., 1 табл.

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную водную суспензию гидроксиапатита и обработку ультразвуковым излучением осуществляют при интенсивности ультразвука 10,0-13,9 Вт/см2 и частоте 35 кГц при Т = 40ºС в течение 0,5–1 часа, при этом обработку повторяют от 3 до 5 раз с промежуточной сушкой продукта на воздухе в течение 1–5 часов. Вышеописанный способ получения биомедицинского материала на основе пористых металлических материалов является технологически простым, позволяющим сохранить биологическую активность гидроксиапатита и достичь равномерного и прочного покрытия не только на поверхности, но и по всему объему. 1 табл., 5 пр., 3 ил.
Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и давлении в присутствии извести в щелочном растворе с последующим охлаждением пульпы после выщелачивания, добавлением воды, перемешиванием и фильтрованием. При этом используют известь, отожженную при температуре 1200-1400°C, взятую в количестве, необходимом для получения соотношения CaO/SiO2, равного 1,5-2,0. Выщелачивание осуществляют при соотношении жидкое:твердое, равном (4,5-4,8) : 1, при давлении 37-40 МПа. После охлаждения пульпы добавляют дистиллированную воду при температуре 90-100°С до получения соотношения жидкое:твердое, равного (9,8-10,0):1. Изобретение позволяет повысить степень извлечения оксида алюминия в раствор из отходов глиноземного производства до 85-90%. 2 пр.
Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ. Предлагается способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050оС в течение 1-1,5 ч. Полученный композиционный биоактивный материал (Ca10(PO4)6(OH)2-CaF2, имеющий елкокристаллическую структуру и повышенную твердость, может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. 1 табл., 2 пр.
Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция, при этом проводят автоклавную обработку красного шлама при температуре 235-250°С и давлении 21-26 МПа при перемешивании с введением в исходный шлам 30%-ного раствора NaOH при соотношении Ж:Т, равном (4-5):1, и соли железа(II) в количестве 5-25 мас.% от массы исходного шлама. Содержание гидроксида кальция составляет 3-4 мас.% по СаО от массы исходного шлама. Изобретение обеспечивает высокое извлечение целевого продукта, значительное снижение температуры процесса и, как следствие, отсутствие возможности образования карбида железа в качестве нежелательной примеси и необходимости в дополнительном дроблении и измельчении целевого продукта. 2 з.п. ф-лы, 3 пр.
Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка. Фторид натрия и фторид калия берут в соотношении, равном 1:1, в качестве соединения редкого металла используют оксид, или фторид, или оксифторид металла, выбранного из группы, включающей скандий, иттрий, цирконий, в количестве 4-10 мас.% от общего, при этом содержание алюминия равно 50-65 мас.% от общего, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 15-20 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин. Изобретение позволяет получить лигатуру на основе алюминия с высоким содержанием легирующего металла более 20 мас.%. 3 пр.
Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими фильтрацией полученного осадка, его промывкой этиловым спиртом и сушкой. Обработку ведут серной кислотой при ее концентрации 350-500 г/дм3, в присутствии соли, содержащей ионы аммония в количестве 1,5-2,0 моль/дм3. В качестве соли, содержащей соли аммония, используют сульфат аммония или ацетат аммония. Обеспечивается возможность осаждения скандия из растворов с низким содержанием скандия с высокой степенью извлечения скандия в осадок с одновременным отделением скандия от примесей металлов. 2 пр., 1 табл.
Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида кальция и фосфорной кислоты с последующим добавлением фторсодержащего соединения. При этом взаимодействие осуществляют путем смешивания 0,04N-ного водного раствора гидроксида кальция и 0,2N-ного водного раствора фосфорной кислоты с последующим добавлением 0,25N-ного водного раствора фтороводородной кислоты в качестве фторсодержащего соединения, при их объемном соотношении, равном Ca(OH)2:H3PO4:HF=3,75-5,55:1:0,004-0,088 при комнатной температуре и при рН=9-11 в течение 10-15 мин. Технический результат заключается в разработке способа, обеспечивающего выход готового продукта с высокой степенью дисперсности и чистоты. 3 пр.
Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и оборотного растворов с введением в нее раствора цинка, проведение четырехстадийного электролиза. При этом осуществляют дополнительно пятую стадию электролиза при использовании в качестве электролита раствора, полученного растворением шлака после цементации галлия на галламе аюминия в гидроксиде натрия, при катодной плотности тока менее 50 А/м2 и объемной плотности тока не более 3 кА/м3 при температуре 50-60°C в течение 5-6 часов с последующей его подачей на вторую стадию электролиза. Техническим результатом является повышение удельной производительности процесса наряду с повышением чистоты товарного галлия за счет удаления примесей тяжелых металлов и более полной очистки исходных растворов. 1 пр.
Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных цирконийсодержащих растворов осаждением путем введения источника фторид-иона при нагревании с последующим охлаждением до комнатной температуры. В качестве исходного цирконийсодержащего раствора используют раствор с концентрацией серной кислоты 10-300 г/л. В качестве источника фторид-иона используют смесь фторида калия или натрия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0; при этом смесь вводят в количестве 10÷30 мл/1 г Zr при температуре 40-60°С и после охлаждения выдерживают в течение 22-24 часов. Способ обеспечивает возможность извлечения циркония из растворов с низким содержанием циркония при высоком проценте извлечения. 4 пр.
Изобретение относится к области гидрометаллургии и может быть использовано в способе для извлечения и концентрирования иттрия из водных растворов. Способ извлечения иттрия из водных солянокислых растворов включает экстракцию смесью органической кислоты и керосина, при этом в качестве органической кислоты используют ди-2-этил-гексил фосфорную кислоту при соотношении экстракционной смеси и солянокислого раствора, равном 1:1÷3,0. Экстракцию ведут в течение 15-30 минут. Затем проводят реэкстрацию с использованием в качестве реэкстрагента серной кислоты в количестве 180-200 г/дм с добавлением хлорида натрия в количестве 5-10 г/дм3 или источника фторид-иона в количестве 50-150 г/дм3 в пересчете на фторид-ион. В качестве источника фторид-иона используют HF, NH4F, KF. Техническим результатом является упрощение процесса и повышение извлечения иттрия. 1 з.п. ф-лы, 1 пр.

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в 2-3%-ную водную суспензию ГАП и импрегнируют в вакууме при 2·10-10÷9·10-10 мм рт. ст. в трех-пятикратном пульсационном режиме. Соотношение между длительностью импульса и паузы составляет от 3-5 до 10-15. Изобретение обеспечивает технологически простой способ получения биомедицинского материала на основе пористого титана, позволяющий достичь равномерного и прочного покрытия во всем объеме пор материала и сохранить биологическую активность ГАП. 1 ил., 4 пр.
Изобретение относится к металлургии, а именно к переработке красного шлама - отхода глиноземного производства переработки бокситов щелочным способом Байера. Способ извлечения оксида алюминия из красного шлама включет автоклавное выщелачивании красного шлама при температуре 230-260°С и давлении 21-26 МПа в присутствии гидроксида кальция в щелочном растворе, при этом в исходный красный шлам вводят гидроксид кальция в количестве 2,5-5,0% от массы исходного шлама и 40%-ный раствор NaOH до получения соотношения Ж:Т=1,5÷2,8:1; после автоклавного выщелачивания полученную пульпу охлаждают до 80-120°C, затем добавляют 10%-ный раствор NaOH или воды до получения соотношения Ж:Т не менее 5:1 и выдерживают при перемешивании не менее 1 часа, после чего фильтруют. Изобретение позволяет извлечь оксид алюминия из красного шлама без необходимости проведения дополнительных операций, а также обеспечить высокий процент извлечения оксида алюминия из красного шлама и снизить потери целевого продукта с отработанным красным шламом. Кроме того, изобретение позволяет снизить содержание щелочи (Na2Oкауст) в отработанном красном шламе и возвратить ее в щелочной алюминийсодержащий раствор. 3 пр.

Изобретение относится к способу электрохимического выделения галлия из шелочно-алюминатных растворов глиноземного производства процесса Байера. Способ включает подготовку исходной смеси смешением маточного и оборотного растворов в соотношении, равном 1: (0,8÷0,9), при постоянном перемешивании и обрабатывают воздухом в количестве 0,4-0,6 нм3/час на 1 м3 смеси при температуре 70-90°C, а затем вводят известь в количестве 28-30 кг CаОакт. на 100 кг Al2O3 в растворе с последующим отделением образовавшегося осадка. Далее ведут первую стадию электролиза при объемной плотности тока 3,0-3,5 кА/м3 и температуре 40-50°C с использованием в качестве электролита цинкатного раствора. Вторую стадию осуществляют с использованием в качестве электролита исходной смеси при объемной плотности тока 5,6-6,0 кА/м3 и температуре 28-35°C. На третьей стадии после установления постоянной величины катодного потенциала объемную плотность тока обратной полярности снижают до 1,5-2,0 кА/м3, а растворение катодного осадка ведут в принимающем растворе, содержащем 85-90 кг/м3 Nа2Oкауст. Четвертую стадию осуществляют при объемной плотности тока 1,25-1,50 кА/м3 с использованием в качестве электролита принимающего раствора, при этом выделенный на катоде осадок растворяют в отработанном после второй стадии электролиза электролите при температуре 60-70°С током обратной полярности с объемной плотностью 3-4 кА/м3. Техническим результатом является повышение удельной производительности, снижение расхода электроэнергии, получение товарного галлия чистотой 99,9999% (6N). 1 з. п. ф-лы, 2 табл., 1 пр.
Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь, состоящую из фторида калия, хлорида калия и фторида алюминия при следующем соотношении компонентов, мас.%: фторид калия 25÷45, хлорид калия 50÷65, фторид алюминия 5÷10, а в качестве легирующего компонента используют оксид соответствующего металла в количестве 10÷25 мас.% от общей массы порошковой смеси, при этом в качестве транспортирующего газа используют оксид углерода, который подают со скоростью 0,2-20 ндм3/мин и под давлением 0,05-3,5 атм. В качестве легирующего компонента используют один или несколько оксидов из группы металлов, включающей скандий, иттрий, гафний, цирконий. Изобретение позволяет использовать легко доступные соединения легирующих металлов, сократить время операции по растворению легирующих компонентов, использовать невысокие температуры ведения процесса до 750°С. 1 з.п. ф-лы, 4 пр.
Изобретение относится к пайке, в частности к способам бесфлюсовой пайки разнородных материалов, которые могут быть использованы для соединения деталей сборных плат, термо- и солнечных батарей, опто- и радиоэлектронной техники

 


Наверх