Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка. Фторид натрия и фторид калия берут в соотношении, равном 1:1, в качестве соединения редкого металла используют оксид, или фторид, или оксифторид металла, выбранного из группы, включающей скандий, иттрий, цирконий, в количестве 4-10 мас.% от общего, при этом содержание алюминия равно 50-65 мас.% от общего, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 15-20 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин. Изобретение позволяет получить лигатуру на основе алюминия с высоким содержанием легирующего металла более 20 мас.%. 3 пр.

 

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. В частности, для легирования нержавеющих сталей или сплавов на основе никеля обогащенные алюминиевые лигатуры должны содержать не менее 20% редкого металла (ГОСТ 5632-2014 “Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные”; ГОСТ Р 52802-2007 “Сплавы никелевые жаропрочные гранулируемые”). Если для легирования алюминиевых сплавов широко применяется использование «бедных» по вводимому металлу алюминиевых лигатур, то для легирования других, не алюминиевых сплавов излишек алюминия не желателен (алюминий используют в качестве раскислителя сталей и сплавов), поэтому получение обогащенных металлами (Sc, Y, Zr) алюминиевых лигатур является насущной и перспективной задачей.

Известен способ получения лигатуры алюминий-скандий-иттрий, включающий приготовление флюса, содержащего смесь солей, плавление флюса и сплава на основе алюминия и осуществление высокотемпературной обменной реакции фторида скандия с алюминием в среде расплавленных галогенидов металлов, в котором готовят флюс, содержащий фторид алюминия, фторид скандия, фторид калия, фторид иттрия и хлорид магния, плавление флюса осуществляют со сплавом на основе алюминия, содержащим от 15 до 30% магния, который подают через приемник на пенокерамические фильтры через расплавленные фториды во встречном потоке аргона, выдерживают в тигле и затем разделяют расплав солей на алюминиево-скандиево-иттриевую лигатуру. Содержание скандия в лигатуре 2,08-2,86 с выходом скандия в сплав 83-87%. Содержание иттрия в лигатуре 0,48-1,20 с выходом иттрия в сплав 82-83% (патент RU 2587700; МПК C22C 1/03, C22C 21/00, C22B 9/10, C22B 21/02; 2016год).

Недостатками известного способа являются, во-первых, технологическая сложность, во-вторых, низкое содержание легирующих элементов в лигатуре.

Известен способ получения лигатуры алюминий-скандий, который включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и калия, а также расплавленный алюминий, подачу оксида скандия, алюмотермическое восстановление скандия из его оксида при температурах 800-850 °С с получением лигатуры алюминий-скандий и ее выгрузку. При этом содержание скандия в лигатуре составляет 0,4-0,8 масс.% (патент RU, МПК C22C 1/03, 2016 год) (прототип).

Недостатками известного способа являются низкое содержания легирующего элемента в лигатуре.

Таким образом, перед авторами стояла задача разработать способ получения алюминиевой лигатуры с высоким содержанием легирующего элемента (≥ масс.%: 20).

Поставленная задача решена в предлагаемом способе получения лигатуры на основе алюминия, включающем приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла, и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка, в котором фторид натрия и фторид калия берут в соотношении, равном 1:1, в качестве соединение редкого металла используют оксид или фторид или оксифторид металла, выбранного из группы: скандий, иттрий, цирконий, в количестве 4-10 масс.% от общего, при этом содержание алюминия равно 50-65 масс.% от общего, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 30-40 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин.

В настоящее время не известен способе получения лигатуры на основе алюминия, в котором расплав для алюмотермичекого восстановления содержит компоненты в предлагаемых количествах, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 30-40 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин.

Исследования, проведенные авторами, позволили установить, что сформированные в процессе алюмотермического восстановления интерметаллические соединения (Al3Sc, Al3Y, Al3Zr), имеющие повышенную относительно матричного алюминия плотность, при осуществлении отстойного центрифугирования концентрируются в донном осадке, где идет формирование и кристаллизация сплава состоящего в основном из интерметаллических соединений типа Al3M (где М это Sc, Y или Zr), окруженных матричным алюминием. При этом существенное влияние на содержание легирующего металла в лигатуре оказывают как условия проведения центрифугирования, так и состав исходной смеси. Так, при проведении центрифугирования с частотой вращения менее 1000 об/мин в течение менее 10 мин выделение интерметаллических включений в малую область осадка происходит недостаточно быстро и жидкого состояния недостаточно для оседания крупных частиц, при этом размер мелких осаждаемых частиц составляет не менее 500-400 нм, то есть в этих условиях не возможно осаждение как крупных, так и мелких интерметаллических частиц. Проведение центрифугирования с частотой вращения более 2500 об/мин в течение более 12 мин нецелесообразно, поскольку шлаковые включения могут также в этом случае осаждаться на дно. При уменьшении соотношения фторид натрия к фториду калия менее, чем 1:1, содержания оксида или фторида или оксифторида металла, выбранного из группы: скандий, иттрий, цирконий, в количестве менее 4 масс.% от общего, и при этом содержание алюминия менее, чем 50 масс.% от общего наблюдается снижение производительности и приводит к большему объему оборотных солей и потерь редких металлов. При увеличении соотношения фторид натрия к фториду калия более, чем 1:1, содержания оксида или фторида или оксифторида металла, выбранного из группы: скандий, иттрий, цирконий, в количестве более 10 масс.% от общего, и при этом содержание алюминия более, чем 65 масс.% от общего наблюдается резкое торможение процесса восстановления редких металлов, поэтому компоненты в меньшей степени переходят в сплав.

Предлагаемый способ может быть осуществлен следующим образом.

В солевой расплав, имеющий соотношение компонентов фторид натрия : фторид калия = 1:1. Вводят оксид или фторид или оксифторид металла, выбранного из группы: скандий, иттрий, цирконий, в количестве 4-10 масс.% от общего, после полного расплавления смеси при температуре 720-780оС вводят металлический алюминий в количестве 50-65 масс.%, после расплавления алюминия и перемешивания расплав выдерживают в течение 30 минут с последующим удалением солевого расплава (оборотного флюса), полученный продукт после дополнительной выдержки при температуре 725-775оС в течение 15-20 минут осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин. Затем после охлаждения и кристаллизации следует отделения донного осадка.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут расплав, содержащий 48,3 г фторида калия и 48,3 г фторида натрия (соотношение 1:1). Вводят 3,4 г оксида скандия (Sc2O3), что составляет 4 масс.% от общего, загружают в конический алундовый тигель и помещают в муфельную печь, по достижении температуры 780° С солевой расплав перемешивают и в полученный расплав загружают 100 г гранулированного алюминия, что составляет 50 масс.% от общего. После расплавления алюминия и перемешивания выдерживают расплав в течение 30 минут, после чего расплав солей сливают. Оставшийся продукт выдерживают в печи 15 минут при температуре 725 °С, затем конический алундовый тигель с расплавом помещают в отстойную центрифугу (ОС-6М) и центрифугируют при частоте вращения ротора ω=2500 об/мин в течение 10 минут. После кристаллизации, охлаждения и удаления алюминиевого сплава из тигля по внешней границе (осадок темнее) отделяют донный осадок. Полученный осадок массой 9,8 г содержит 20,3 масс.% скандия.

Пример 2. Берут расплав, содержащий 40,5 г фторида калия и 40,5 г фторида натрия (соотношение 1:1). Вводят 4,3 г фторида иттрия(YF3), что составляет 5 масс.% от общего, загружают в конический алундовый тигель и помещают в муфельную печь, по достижении температуры 720° С солевой расплав перемешивают и в полученный расплав загружают 100 г гранулированного алюминия, что составляет 54 масс.% от общего. После расплавления алюминия и перемешивания выдерживают расплав в течение 30 минут, после чего расплав солей сливают. Оставшийся продукт выдерживают в печи 20 минут при температуре 775 °С, затем конический алундовый тигель с расплавом помещают в отстойную центрифугу (ОС-6М) и центрифугируют при частоте вращения ротора ω=2000 об/мин в течение 10 минут. После кристаллизации, охлаждения и удаления алюминиевого сплава из тигля по внешней границе (осадок темнее) отделяют донный осадок. Полученный осадок массой5,9 г содержит 30,5 масс.% иттрия.

Пример 3. Берут расплав, содержащий 25 г фторида калия и 25 г фторида натрия (соотношение 1:1). Вводят 9,1 г оксифторида циркония (ZrOF2), что составляет 10 масс.% от общего, загружают в конический алундовый тигель и помещают в муфельную печь, по достижении температуры 780° С солевой расплав перемешивают и в полученный расплав загружают 100 г гранулированного алюминия, что составляет 65масс.% от общего. После расплавления алюминия и перемешивания выдерживают расплав в течение 30 минут, после чего расплав солей сливают. Оставшийся продукт выдерживают в печи 15 минут при температуре 775 °С, затем конический алундовый тигель с расплавом помещают в отстойную центрифугу (ОС-6М) и центрифугируют при частоте вращения ротора ω=1000 об/мин в течение 10 минут. После кристаллизации, охлаждения и удаления алюминиевого сплава из тигля по внешней границе (осадок темнее) отделяют донный осадок. Полученный осадок массой 11,2 г содержит 43,5 масс.% циркония.

Таким образом, авторами предлагается способ получения лигатуры на основе алюминия с высоким обогащением по легирующему металлу, выбранному из группы: скандий, иттрий, цирконий.

Способ получения лигатуры на основе алюминия, включающий приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка, отличающийся тем, что фторид натрия и фторид калия берут в соотношении, равном 1:1, в качестве соединения редкого металла используют оксид, или фторид, или оксифторид металла, выбранного из группы, содержащей скандий, иттрий, цирконий, в количестве 4-10 мас.% от общего, при этом содержание алюминия равно 50-65 мас.% от общего, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 15-20 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 об/мин в течение 10-12 мин.



 

Похожие патенты:

Изобретение относится к получению материалов с металлической матрицей из алюминия или его сплавов, содержащих гадолиний, и может быть использовано в атомной энергетике для изготовления нейтронно-поглощающих экранов и перегородок, транспортно-упаковочных контейнеров.

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида металла-катализатора, восстановления оксида металла-катализатора до металла в среде водорода, выращивания углеродных наноструктур на поверхности покрытых металлом-катализатором частиц алюминия из газовой фазы газообразных углеводородов и спекания полученной шихты горячим прессованием.

Изобретение относится к металлургии. Лигатурный пруток вводят через загубленную в расплав фурму одновременно с инертным газом в поток расплавленного металла.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих в коррозионной среде при температурах до 300-350°С.

Изобретение относится к способу изготовления листа из алюминиевого сплава, используемого для изготовления металлических бутылок или аэрозольных баллонов. Способ получения листа включает литье сляба из алюминиевого сплава, содержащего, мас.%: Si: 0,10-0,35, Fe: 0,30-0,55, Cu: 0,05-0,20, Mn: 0,70-1,0, Mg: 0,80-1,30, Zn: ≤0,25, Ti: <0,10, неизбежные примеси <0,05 каждая и <0,15 всего, остальное - алюминий, удаление поверхностного слоя и гомогенизацию сляба при температуре 550-630°С в течение по меньшей мере одного часа, горячую прокатку, первый этап холодной прокатки с коэффициентом обжатия 35-80%, рекристаллизационный отжиг, повторную холодную прокатку с коэффициентом обжатия 10-35% до толщины 0,35-1,0 мм, при этом рекристаллизационный отжиг осуществляют при температуре 300-400°С в течение по меньшей мере одного часа.

Изобретение относится к области цветной металлургии и электротехники, в частности к сплавам на основе алюминия, и может быть использовано при производстве изделий электротехнического назначения, таких как проводники круглого и квадратного сечения, токопроводящие элементы в виде проволоки, пластин и шин, провода воздушных линий электропередач.

Изобретение относится к способу получения сплавов на основе алюминия-скандия и может быть использовано в аэрокосмической промышленности, в частности для изготовления компонентов фюзеляжа методом сварки.

Изобретение относится к получению алюминиевых сплавов, в частности к способу раскисления выплавляемых алюминиевых сплавов. Способ раскисления сплава Al-Nb-Ti включает плавление и выдержку сплава, содержащего от 50 до 75 мас.% Al и от 5 до 30 мас.% Nb при суммарном содержании Al и Nb 80 мас.% или менее, с использованием исходных алюминиевого, ниобиевого и титанового материалов с суммарным содержанием кислорода 0,5 мас.% или более, при этом плавление осуществляют методом плавки с использованием охлаждаемого водой медного сосуда в атмосфере с давлением от 1,33 Па до 2,67×105 Па при температуре 1900 К или более.

Изобретение относится к получению металлических контейнеров, в частности к изготовлению бутылок для напитков, из алюминиевого листа. Способ изготовления бутылки из алюминиевого листа включает получение алюминиевого листа, выполненного из алюминиевого сплава серии 3ххх или 5xxx, при этом алюминиевый лист имеет измеренный в продольном направлении предел текучести при растяжении 27-33 ksi и предел прочности при растяжении, причем предел прочности при растяжении минус предел текучести при растяжении составляет менее 3,30 ksi (ППР-ПТР<3,30 ksi), и при этом алюминиевый лист имеет толщину от 0,006 дюйма до 0,030 дюйма, вытяжку и утонение алюминиевого листа с образованием контейнера с куполом, шейкообразование для уменьшения диаметра части алюминиевого контейнера с образованием бутылки и финишную обработку бутылки, выполненной с возможностью приема крышки.

Изобретение относится к области металлургии. Алюминиевый сплав содержит 5.4-6,4% кальция, 0,3-0,6% кремния и 0,8-1,2% железа.

Изобретение относится к сплавам латуни и может быть использовано для изготовления изделий в электротехнической, машиностроительной и автомобильной промышленности.

Изобретение относится к получению спеченного твердосплавного материала на основе карбида вольфрама. Способ получения спеченного твердосплавного материала на основе карбида вольфрама, включающий приготовление шихты, содержащей порошки карбида вольфрама, кобальта и нанопорошковую добавку, ее прессование и спекание.

Изобретение относится к получению материалов с металлической матрицей из алюминия или его сплавов, содержащих гадолиний, и может быть использовано в атомной энергетике для изготовления нейтронно-поглощающих экранов и перегородок, транспортно-упаковочных контейнеров.

Изобретение относится к области металлургии, в частности к изготовлению разветвленных нанонитей из тугоплавких металлов, которые могут использоваться в высокотемпературных приборах, в электронных устройствах и датчиках, в магнитных записывающих устройствах, в наномеханике, магнитоэлектронике, вакуумной электронике и материаловедении.

Изобретение относится к получению порошка на основе тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2MnSi, которая может быть использована при производстве микроэлектроники.

Изобретение относится к изготовлению распыляемых композитных мишеней сплава Гейслера Co2MnSi, которые могут найти применение при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава с получением однородной порошковой смеси и ее спекание.

Изобретение относится к получению алюминиевых сплавов, содержащих медь и углерод. Способ получения алюминиевого сплава, содержащего Cu и C, включает приготовление расплава Al, содержащего Cu, добавление к расплаву частиц графита и частиц ускорителя науглероживания, содержащего бор или соединение бора, при температуре в от 800°C до 1000°C в атмосфере с низкой концентрацией кислорода или атмосфере защитного газа, удаление шлакового ускорителя науглероживания, который образуется из частиц ускорителя науглероживания и всплывает на поверхности расплава после диспергирования графита в расплаве и литье полученного расплава в литейную форму.

Группа изобретений относится к изготовлению спеченных изделий из порошка вентильных металлов. Порошок вентильного металла содержит кислород в количестве более 4100 ч.н.м.⋅г/м2, азот в количестве менее 300 ч.н.м., бор в количестве менее 10 ч.н.м., серу в количестве менее 20 ч.н.м., кремний в количестве менее 20 ч.н.м., мышьяк в количестве менее 10 ч.н.м.

Группа изобретений относится к производству танталовых сплавов. Формируют смесь реагентов, содержащую порошок пентаоксида тантала, порошок пероксида бария, порошок металлического алюминия, порошок металлического вольфрама и по меньшей мере один порошок, выбранный из группы, состоящей из порошка оксида железа (III) и порошка оксида меди (II).

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка. Фторид натрия и фторид калия берут в соотношении, равном 1:1, в качестве соединения редкого металла используют оксид, или фторид, или оксифторид металла, выбранного из группы, включающей скандий, иттрий, цирконий, в количестве 4-10 мас. от общего, при этом содержание алюминия равно 50-65 мас. от общего, а после алюмотермического восстановления расплав выдерживают при температуре 725-775оС в течение 15-20 минут и осуществляют отстойное центрифугирование при частоте вращения 1000-2500 обмин в течение 10-12 мин. Изобретение позволяет получить лигатуру на основе алюминия с высоким содержанием легирующего металла более 20 мас.. 3 пр.

Наверх