Патенты автора Совлуков Александр Сергеевич (RU)

Изобретение относится к измерительной технике и служит для высокоточного определения положения границы раздела двух диэлектрических сред, находящихся в какой-либо емкости одна над другой и образующих плоскую границу раздела. Технический результат - повышение точности измерений. Результат достигается тем, что предложено устройство для измерения положения границы раздела двух диэлектрических сред в емкости, содержащее три располагаемых вертикально в емкости с контролируемыми средами отрезка коаксиальной длинной линии, нижние концы которых совмещены с дном емкости, и заполняемые средами в соответствии с их расположением в емкости, отрезки длинной линии выполнены имеющими оконечные горизонтальные участки фиксированной разной длины и одинаковые нагрузочные реактивные сопротивления на концах этих горизонтальных участков, скачкообразно заполняемых средами и опорожняемых при, соответственно, поступлении сред в емкость и их удалении из нее, каждый отрезок длинной линии подключен ко входу соответствующего электронного блока, выходы электронных блоков подсоединены к соответствующим входам функционального преобразователя, выход которого соединен с регистратором. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Техническим результатом изобретения является упрощение процесса измерения длины металлической трубы. Технический результат достигается тем, что в способе измерения длины металлической трубы, при котором на измерительном участке контролируемое изделие располагают изолированно над заземленной металлической плоскостью, возбуждают электромагнитные колебания в первом радиоволновом резонаторе в виде отрезка длинной линии, разомкнутого на концах и образуемого совокупностью проводников - металлической трубы и данной плоскости, и измеряют резонансную частоту ƒ1 электромагнитных колебаний этого отрезка длинной линии, дополнительно возбуждают электромагнитные колебания во втором радиоволновом резонаторе, размещаемом в пределах измерительного участка и заполняемом окружающей средой на измерительном участке, и измеряют резонансную частоту ƒ2 электромагнитных колебаний этого резонатора, производят совместное преобразование измеренных резонансных частот ƒ1 и ƒ2 согласно соотношению , n=1, 2,…, где ƒ20 - значение ƒ2 незаполненного средой второго радиоволнового резонатора, с - скорость света, по результату которого судят о длине металлической трубы. 1 ил.

Изобретение относится к области электротехники, а именно к коаксиальному волноводному резонатору для измерения физических свойств диэлектрического вещества. Расширение функциональных возможностей устройства является техническим результатом, который достигается за счет того, что волноводный резонатор выполнен в виде коаксиального резонатора с одним из его торцевых участков в виде запредельного коаксиального волновода и другим торцевым участком, идентичным первому торцевому участку или выполненным в виде металлической стенки коаксиального резонатора, при этом запредельный коаксиальный волновод имеет наружный проводник того же диаметра, что и диаметр наружного проводника коаксиального резонатора, а внутренний проводник запредельного коаксиального волновода имеет увеличенный диаметр по сравнению с диаметром внутреннего проводника коаксиального резонатора, при этом в резонаторе возбуждены электромагнитные колебания одного из высших типов Hmnp (m=0, 1, 2, …; n=2, 3, …; р=1, 2, …) коаксиального резонатора, в частности низшего типа H021, или типа Emnp (m=0, 1, 2, …; n=1, 2, …; р=1, 2, …), в частности низшего типа E011. 2 ил.

Изобретение относится к области электротехники, а именно, к волноводному резонатору, в котором проводят определение физических свойств диэлектрической жидкости. Расширение функциональных возможностей способа измерения при сохранении точности измерений является техническим результатом, который достигается за счет того, что возбуждение электромагнитных волн осуществляют в центральной части волновода, имеющего идентичные части его полости относительно точки возбуждения электромагнитных волн, с идентичным размещением в них соответствующих контролируемой и эталонной жидкостей, принимают электромагнитные сигналы на торцах волновода после их распространения вдоль соответствующих участков волновода, измеряют значения амплитуды напряженности электромагнитного поля на каждом из торцов волновода и по разности значений Е2-E1 принимаемых сигналов, где Е2 - значение амплитуды для контролируемой жидкости, E1 - значение амплитуды для эталонной жидкости, определяют диэлектрическую проницаемость исследуемой жидкости. 2 ил.

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение напряженности электрического поля стоячей электромагнитной волны, в частности ее минимум, в фиксированном сечении отрезка длинной линии при эталонном значении величины диэлектрической проницаемости жидкости, после чего в процессе измерений изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью электрического поля стоячей электромагнитной волны номинального значения, в частности ее минимума, при измеряемом значении диэлектрической проницаемости жидкости в этом фиксированном сечении отрезка длинной линии, и о значении измеряемой диэлектрической проницаемости жидкости судят по величине этой частоты. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом изобретения является повышение точности измерений. Технический результат достигается тем, что в устройстве для измерения уровня жидкости в резервуаре, содержащем два располагаемые вертикально в резервуаре с контролируемой жидкостью отрезка длинной линии, подключенные к электронному блоку, один из отрезков длинной линии выполнен в виде П-образного полого отрезка двухпроводной длинной линии, а другой - в виде отрезка коаксиальной длинной линии, наружным проводником которой служит внутренняя поверхность отрезка двухпроводной длинной линии, а его внутренний проводник расположен соосно с его наружным проводником в полом отрезке двухпроводной длинной линии, при этом нижние концы отрезков длинной линии совмещены с дном резервуара, отрезок двухпроводной длинной линии содержит на его нижнем конце оконечный горизонтальный участок, скачкообразно заполняемый жидкостью и опорожняемый при соответственно поступлении жидкости в резервуар и ее удалении из резервуара. 3 ил.

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее генератор электромагнитных колебаний фиксированной частоты, подсоединенный к нему с помощью первой линии связи первый элемент связи, располагаемый у одного конца металлической трубы, для возбуждения электромагнитных волн на участке трубы, располагаемый у другого конца трубы второй элемент связи для приема электромагнитных колебаний, к которому с помощью второй линии связи подсоединен входом первый детектор, выходом подключенный к первому входу функционального преобразователя, второй вход которого подсоединен к выходу второго детектора, вход которого соединен с генератором колебаний, и подсоединенный к выходу данного преобразователя регистратор, дополнительно содержит размещаемую внутри участка трубы коаксиально с ней диэлектрическую трубу той же длины, внутри которой размещены первая линия связи с первым элементом связи у одного конца диэлектрической трубы и вторая линия связи со вторым элементом связи у ее другого конца. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). Сущность заявленного решения заключается в том, что в способе измерения физических свойств диэлектрической жидкости, при котором возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых соответственно контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии. Техническим результатом настоящего изобретения является повышение точности измерения физических свойств диэлектрической жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости, независимо от диэлектрической проницаемости жидкости. Техническим результатом является повышение точности измерений. В способе измерения уровня диэлектрической жидкости в емкости, при котором размещают в емкости вертикально объемный волноводный резонатор, уровень диэлектрической жидкости в котором равен ее уровню в емкости, в полости волноводного резонатора размещают вещество с частотно-зависимой диэлектрической проницаемостью, частотный диапазон изменения которой выбирают в пределах изменения резонансной частоты волноводного резонатора, которое имеет место при заполнении полости волноводного резонатора диэлектрической жидкостью, возбуждают в волноводном резонаторе электромагнитные колебания на первой резонансной частоте, измеряют первую резонансную частоту, возбуждают в волноводном резонаторе электромагнитные колебания на второй резонансной частоте, измеряют вторую резонансную частоту и производят совместное функциональное преобразование измеренных первой и второй резонансных частот. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в каком-либо резервуаре, независимо от диэлектрической проницаемости жидкости. Техническим результатом является повышение точности измерений. В способе измерения уровня диэлектрической жидкости в резервуаре, при котором размещают в резервуаре вертикально волновод, на одном из торцов которого, в первом измерении, возбуждают в волноводе электромагнитные волны фиксированной частоты, частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты, принимают электромагнитные сигналы после их распространения вдоль волновода на том же или другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно, во втором измерении, частоту возбуждаемых электромагнитных волн выбирают выше критической частоты, возбуждают в волноводе электромагнитные колебания как в волноводном резонаторе, измеряют резонансную частоту электромагнитных колебаний волноводного резонатора, производят совместное функциональное преобразование измеряемых значений амплитуды и резонансной частоты в первом и втором измерениях, соответственно, и судят об уровне диэлектрической жидкости по результату этого преобразования. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения положения границы раздела двух диэлектрических сред, находящихся в резервуаре одна над другой и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от значений диэлектрической проницаемости обеих сред. Технический результат - повышение точности измерений. В способе измерения положения границы раздела двух диэлектрических сред в резервуаре, при котором размещают вертикально три отрезка длинной линии, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1, ƒ2 и ƒ3, измеряют значения ƒ1, ƒ2 и ƒ3 в зависимости от координаты z положения границы раздела двух сред в резервуаре, отрезки длинной линии выполняют имеющими оконечные горизонтальные участки фиксированной разной длины и одинаковые нагрузочные реактивные сопротивления на концах этих горизонтальных участков, скачкообразно заполняемых средами и опорожняемых при соответственно поступлении сред в резервуар и их удалении из него, и производят совместное функциональное преобразование ƒ1, ƒ2 и ƒ3 согласно соответствующему соотношению. 2 ил.

Изобретение может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в резервуаре. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом является повышение точности измерений. В устройстве для измерения уровня, содержащем два располагаемых вертикально отрезка коаксиальной длинной линии, нижние концы которых совмещены с дном резервуара, подключенных к входу соответствующего электронного блока, выходы электронных блоков подсоединены к соответствующим входам функционального преобразователя, выход которого соединен с регистратором, отрезки коаксиальной длинной линии выполнены в виде соосно расположенных внутреннего и двух полых цилиндрических проводников, при этом один отрезок коаксиальной длинной линии образован внутренним проводником и внутренней поверхностью среднего цилиндрического проводника, а другой - наружной поверхностью среднего цилиндрического проводника и внешним цилиндрическим проводником, отрезки коаксиальной длинной линии содержат на их нижних концах соответствующие оконечные горизонтальные участки одинаковой длины, скачкообразно заполняемые жидкостью и опорожняемые при, соответственно, поступлении жидкости в резервуар и ее удалении из резервуара. 3 ил.

Изобретение относится к измерительной технике. В способе измерения уровня диэлектрической жидкости в емкости, в первом измерении, в располагаемом вертикально в емкости с жидкостью, первом отрезке длинной линии и заполняемом жидкостью в соответствии с ее уровнем в емкости, возбуждают электромагнитные волны на фиксированной частоте. Принимают на том же конце отрезка линии электромагнитные волны, распространившиеся вдоль него и отраженные от его нижнего конца. Измеряют фазовый сдвиг возбуждаемых и принимаемых волн. Во втором измерении, возбуждают на той же, что и в первом измерении, или иной фиксированной частоте электромагнитные волны, распространяющиеся со скоростью, отличной от скорости распространения волн в первом отрезке линии. Принимают на том же конце отрезка линии волны, распространившиеся вдоль него и отраженные от его нижнего конца. Измеряют сдвиг этих возбуждаемых и принимаемых электромагнитных волн и производят совместное функциональное преобразование измеренных значений. По результату судят об уровне жидкости в емкости. Повышается точность измерения. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб, стержней как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Техническим результатом является расширение функциональных возможностей способа измерения вследствие упрощения процесса измерения. В способе измерения длины протяженного металлического изделия, при котором контролируемое металлическое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости возбуждают на фиксированной частоте электромагнитные волны ТЕМ-типа, и в первом такте измерений измеряют фазовый сдвиг Δϕ1 электромагнитных волн, дополнительно во втором такте измерений осуществляют в одном из сечений отрезка длинной линии его замыкание накоротко на фиксированной длине от первого разомкнутого конца и измеряют фазовый сдвиг Δϕ2 электромагнитных волн, производят совместное преобразование измеренных фазовых сдвигов Δϕ1 и Δϕ2 согласно соотношению. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения положения границ раздела между компонентами трехкомпонентной среды, находящейся в какой-либо емкости, одна компонента над другой, и образующих плоские границы раздела, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Сущность заявленного решения заключается в том, что устройство для измерения положения границ раздела между компонентами трехкомпонентной среды в емкости, одна компонента над другой, образующими плоские горизонтальные границы раздела, содержит размещаемые вертикально два отрезка коаксиальной длинной линии, заполняемых компонентами среды в соответствии с их расположением в емкости, линии связи этих отрезков коаксиальной длинной линии с соответствующими электронными блоками для возбуждения в первом и втором отрезках длинной линии электромагнитных колебаний на его резонансной частоте ƒ1 и ƒ2, соответственно, и осуществления измерения ƒ1 и ƒ2, выходы которых подсоединены ко входам функционального преобразователя, к выходу которого подключен регистратор, где фиксируются результаты совместного преобразования ƒ1 и ƒ2, по результату которого определяют положение каждой границы раздела, первый и второй отрезки длинной линии выполнены с равномерным распределением энергии электрического поля вдоль них, но в каждом из них, по меньшей мере, один из проводников покрыт по всей длине диэлектрической оболочкой, отличающееся тем, что отрезки коаксиальной длинной линии расположены соосно и образованы совокупностью двух соосных металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, другим проводником которого служит центральный проводник, покрытый по всей длине диэлектрической оболочкой, а наружная поверхность внутреннего цилиндра, покрытая по всей длине диэлектрической оболочкой, служит внутренним проводником другого отрезка коаксиальной длинной линии, при этом в первом и втором отрезках коаксиальной длинной линии имеет разное значение величина где εп - относительная диэлектрическая проницаемость материала оболочки, а1, r и а2 - диаметры, соответственно, внутреннего проводника, оболочки и внешнего проводника каждого отрезка коаксиальной длинной линии. Техническим результатом изобретения является повышение точности измерения. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при котором контролируемую трубу располагают изолированно над заземленной металлической плоскостью, осуществляют как в отрезке длинной линии, разомкнутом на концах, возбуждение на его первом конце электромагнитных видеосигналов и прием отраженных видеосигналов, в первом такте измерений измеряют суммарное время Δt1 прямого и обратного распространения электромагнитных видеосигналов вдоль отрезка длинной линии, дополнительно, во втором такте измерений, осуществляют в одном из сечений отрезка длинной линии его замыкание накоротко на фиксированной длине от первого разомкнутого конца и измеряют суммарное время Δt2 прямого и обратного распространения электромагнитных видеосигналов вдоль отрезка длинной линии, отраженных от точки короткого замыкания, производят совместное преобразование измеренных значений Δt1 и Δt2. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом изобретения является повышение точности измерений. Технический результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости в емкости, содержащем два располагаемых вертикально в емкости с контролируемой жидкостью отрезка длинной линии, подключенных к электронному блоку, один из отрезков длинной линии выполнен в виде П-образного полого отрезка двухпроводной длинной линии, а другой - в виде отрезка коаксиальной длинной линии, наружным проводником которой служит внутренняя поверхность отрезка двухпроводной длинной линии, а его внутренний проводник расположен соосно с его наружным проводником в полом отрезке двухпроводной длинной линии, при этом концы отрезков длинной линии совмещены с дном емкости, отрезки длинной линии содержат на их совмещенных концах оконечные горизонтальные участки одинаковой длины, скачкообразно заполняемые жидкостью и опорожняемые при соответственно поступлении жидкости в емкость и ее удалении из емкости. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.). Техническим результатом изобретения является упрощение конструкции устройства для измерения физических свойств жидкости. Технический результат достигается тем, что в устройстве для измерения физических свойств диэлектрической жидкости, содержащем волновод с размещенной в электромагнитном поле волновода с одного из его торцевых участков контролируемой жидкостью и с другого торцевого участка волновода идентично размещенной той же жидкостью с эталонным значением ее измеряемого физического свойства, подсоединенный к волноводу на одном его торцевом участке через первый элемент связи генератор электромагнитных колебаний фиксированной частоты, которая ниже критической частоты волновода, а на другом торцевом участке волновода к нему через второй элемент связи подключен детектор, к выходу которого подсоединен регистратор амплитуды напряженности электрического поля, волновод выполнен в виде коаксиального волновода, а фиксированная частота генератора выбрана меньшей критической частоты коаксиального волновода для низшего типа волн H11 в коаксиальном волноводе. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.). Повышение точности измерения физических свойств диэлектрической жидкости является техническим результатом. В предложенном способе обеспечивают возбуждение электромагнитных волн в каждом из двух коаксиальных волноводов, заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью, расположенных соосно и образованных совокупностью двух соосных металлических цилиндров и соосного с ними центрального проводника, при этом внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из коаксиальных волноводов, а его наружная поверхность служит внутренним проводником другого коаксиального волновода, в каждом из двух коаксиальных волноводов на одном из его торцов возбуждают электромагнитные волны типа Н11 фиксированной частоты, которую выбирают ниже критической частоты волн типа Н11 соответствующего коаксиального волновода, на этом же или другом его торце измеряют амплитуду напряженности электрического поля и по соотношению измеряемых амплитуд в двух коаксиальных волноводах судят об измеряемом физическом свойстве диэлектрической жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным, чувствительными элементами в виде участков этого отрезка коаксиальной длинной линии, заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью. Отрезок коаксиальной длинной линии установлен вертикально и выполнен в виде совокупности двух участков, один из которых образован центральным металлическим стержнем и внутренней поверхностью соосного с ним внутреннего металлического цилиндра, а другой - внешней поверхностью внутреннего металлического цилиндра и внешним металлическим цилиндром, причем внешний металлический цилиндр закрыт с обоих торцов верхней и нижней металлическими плоскостями, а центральный металлический стержень разомкнут на верхнем конце и замкнут накоротко на его нижнем конце с нижней металлической плоскостью, внутренний металлический цилиндр замкнут накоротко на его верхнем конце с верхней металлической плоскостью и имеет снизу длину, меньшую длины центрального металлического стержня и длины внешнего металлического цилиндра, на нижней части волноводного резонатора, у нижнего конца внутреннего металлического цилиндра размещена горизонтально диэлектрическая пластина, герметично разделяющая пространство выше нее между центральным металлическим стержнем и внутренней поверхностью внутреннего металлического цилиндра и пространство выше нее между внешней поверхностью внутреннего металлического цилиндра и внешним металлическим цилиндром, одно из которых заполнено, по меньшей мере частично, контролируемой жидкостью, а другое, до того же уровня, - эталонной жидкостью, при этом в первом и втором участках отрезка коаксиальной длинной линии имеет одинаковое значение величина а2 / а1, где а1 и а2 - диаметры, соответственно, внутреннего и внешнего проводников каждого из двух участков отрезка коаксиальной длинной линии. Технический результат - повышение точности измерения. 2 ил.

Изобретение может быть использовано для определения положения границы раздела двух диэлектрических сред, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от значений диэлектрической проницаемости. Техническим результатом является повышение точности измерения. В способе размещают два отрезка коаксиальной длинной линии, каждый из которых имеет длину l, возбуждают в отрезках электромагнитные колебания на разных резонансных частотах ƒ1 и ƒ2, и измеряют резонансные частоты ƒ1 и ƒ2 в зависимости от координаты z границы раздела двух сред в емкости, наружные проводники обоих отрезков выполняют с нижними оконечными, скачкообразно заполняемыми средами и опорожняемыми, между параллельными наружными проводниками отрезков возбуждают электромагнитные колебания как в отрезке двухпроводной длинной линии, имеющем на конце его горизонтального участка нагрузочное реактивное сопротивление, отличное от нагрузочных реактивных сопротивлений на концах отрезков, на третьей резонансной частоте ƒ3, которой соответствует иное, чем на резонансных частотах ƒ1 и ƒ2, распределение энергии электромагнитного поля стоячей волны вдоль данного отрезка, измеряют ƒ3 в зависимости от координаты z и производят функциональную обработку по соответствующей зависимости. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в емкости, независимо от диэлектрической проницаемости жидкости. Техническим результатом является повышение точности измерений. В способе в первом отрезке длинной линии и заполняемом жидкостью в соответствии с ее уровнем z в емкости возбуждают электромагнитные импульсные сигналы, принимают сигналы, отраженные от нижнего конца отрезка длинной линии, измеряют суммарное время t1 прямого и обратного распространения электромагнитных импульсных сигналов. Во втором измерении, в располагаемом вертикально в емкости с контролируемой жидкостью втором отрезке длинной линии и заполняемом жидкостью в соответствии с ее уровнем в емкости возбуждают электромагнитные импульсные сигналы, распространяющиеся со скоростью, отличной от скорости распространения электромагнитных импульсных сигналов в первом отрезке длинной линии, принимают электромагнитные импульсные сигналы, отраженные от нижнего конца отрезка длинной линии, измеряют суммарное время t2 прямого и обратного распространения электромагнитных импульсных сигналов и производят совместное функциональное преобразование измеренных значений t1 и t2, по результату которого судят об уровне жидкости. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Техническим результатом является расширение функциональных возможностей. Устройство для измерения диаметра провода, содержащее размещаемую снаружи провода коаксиально с ним металлическую трубу, выполненную из трех участков, на одном из которых, расположенном на измерительном участке провода, возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, каждый из участков металлической трубы с проводом с обеих сторон от измерительного участка является запредельным волноводом для частот электромагнитных колебаний, возбуждаемых в объемном резонаторе, содержит на каждом из этих двух участков расположенную внутри металлической трубы вдоль нее, металлическую плоскость, соединенную по всей длине с внутренней поверхностью трубы и имеющей ширину, сужающую сечение трубы с расположенным соосно с ней проводом. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, в первом измерении, возбуждают в отрезке длинной линии электромагнитные импульсные сигналы в располагаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной l и заполняемом жидкостью в соответствии с ее уровнем z в емкости, принимают сигналы, отраженные от нижнего конца отрезка длинной линии, измеряют суммарное время t прямого и обратного распространения импульсных сигналов, дополнительно, во втором измерении, возбуждают в отрезке длинной линии электромагнитные колебания, измеряют его резонансную частоту f электромагнитных колебаний и производят совместное функциональное преобразование результатов первого и второго измерений. Второе измерение производят в другом, размещаемом вертикально в емкости, отрезке длинной линии, имеющем на нижнем конце горизонтальный участок фиксированной длины z0, скачкообразно заполняемый жидкостью и опорожняемый при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости. 1 ил.

Изобретение может быть использовано для измерения положения границы раздела двух жидкостей. Техническим результатом является повышение точности. В способе размещают вертикально два идентичных отрезка коаксиальной длинной линии, возбуждают в данных отрезках электромагнитные колебания на разных резонансных частотах f1 и f2, производят совместное функциональное преобразование f1, f2 и t, возбуждение электромагнитных колебаний осуществляют в двух отрезках коаксиальной длинной линии, содержащих на их нижних концах идентичные горизонтальные участки длиной z0, скачкообразно заполняемые жидкостью при ее поступлении в емкость и опорожняемые при удалении жидкости из емкости, производят измерение их резонансных частот, а зондирование жидкостей электромагнитными видеосигналами в отрезке двухпроводной линии, прием видеосигналов, отраженных от его нижнего конца, на его верхнем торце, осуществляют при коротком замыкании этого отрезка двухпроводной линии на его нижнем конце и производят совместное функциональное преобразование f1(z,z0), f2(z,z0) и t(z). 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения положения границы раздела двух жидкостей, находящихся в каком-либо резервуаре одна над другой и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обеих жидкостей. В предлагаемом способе определения положения границы раздела двух жидкостей в резервуаре, при котором в резервуаре с жидкостями, одна над другой образующими плоскую горизонтальную границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых жидкостями в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты в зависимости от координаты z границы раздела двух жидкостей, дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают, как в отрезке двухпроводной длинной линии, электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн, возбуждение электромагнитных колебаний осуществляют в двух отрезках коаксиальной длинной линии, содержащих на их нижних концах идентичные, располагаемые параллельно, горизонтальные участки длиной z0, скачкообразно заполняемые жидкостью при ее поступлении в резервуар и опорожняемые при удалении жидкости из него, производят измерение их резонансных частот ƒ1(z,z0) и ƒ2(z,z0), а возбуждение в отрезке двухпроводной длинной линии, прием на верхнем конце электромагнитных волн, распространившихся вдоль него и отраженных от конца его горизонтального участка, и производят совместное функциональное преобразование ƒ1(z,z0), ƒ2(z,z0) и Δϕ(z,z0), результат которого не зависит от значений электрофизических параметров обеих жидкостей, образующих границу раздела. Технический результат - повышение точности определения положения границы раздела двух жидкостей в резервуаре. 2 ил.

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ. Техническим результатом является повышение точности измерения. В способе размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков длинной линии возбуждают как в отрезке двухпроводной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ. 2 ил.

Изобретение может быть использовано для определения положения границ раздела трехкомпонентной среды, например воздуха и жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей. В способе размещают два отрезка длинной линии, возбуждают электромагнитные колебания на его резонансной частоте и , осуществляют их совместное функциональное преобразование, измерение и производят в отрезках, выполняемых с равномерным распределением энергии электрического поля вдоль них, идентичными, но в каждом из них один из проводников покрыт по всей длине диэлектрической оболочкой, которая отлична одна от другой по толщине или (и) диэлектрической проницаемости, положение каждой границы раздела определяют по разности величин, первая из которых пропорциональна разности между величиной, пропорциональной квадрату отношения значения , соответственно, в отсутствие контролируемой среды к его значению при наличии этой среды в емкости, и единицей, а вторая величина пропорциональна разности между величиной, пропорциональной квадрату отношения значения , соответственно, в отсутствие контролируемой среды к его значению при наличии этой среды, и единицей. 1 з.п. ф-лы, 2 ил.

Использование: для высокоточного измерения положения границы раздела двух веществ. Сущность изобретения заключается в том, что способ измерения положения границы раздела двух веществ в резервуаре, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на разных резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты в зависимости от координаты положения границы раздела двух веществ в резервуаре, дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии как в отрезке двухпроводной линии осуществляют с его верхнего торца зондирование веществ электромагнитными видеосигналами, принимают на верхнем торце этого отрезка двухпроводной линии видеосигналы, отраженные от его нижнего торца, измеряют суммарное время их прямого и обратного распространения и производят совместное функциональное преобразование ƒ1, ƒ2 и t, результат которого не зависит от значений электрофизических параметров обоих веществ, образующих границу раздела. Технический результат: обеспечение возможности повышения точности измерения положения границы раздела двух веществ в резервуаре. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Устройство содержит металлическую полость в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн, с одной упругой торцевой стенкой, соединенного с помощью элемента возбуждения электромагнитных колебаний с генератором электромагнитных колебаний фиксированной частоты и с помощью элемента съема электромагнитных колебаний с детектором, выходом соединенным с регистратором. Предельный волновод выполнен П-образным, у которого другая торцевая стенка выполнена упругой, а элемент возбуждения электромагнитных колебаний и элемент съема электромагнитных колебаний расположены в центральной части П-образного предельного волновода. Технический результат заключается в расширении границ применения устройства и повышении его чувствительности. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве. Сущность заявленного решения заключается в том, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором на одном из торцов трубы возбуждают в ней электромагнитные волны, принимают их после распространения вдоль трубы на другом ее торце, возбуждение электромагнитных волн осуществляют на фиксированной частоте в трубе как в полом волноводе, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из типов волн в трубе, и измеряют амплитуду принимаемых электромагнитных волн этого типа волн, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа H01 в трубе. Техническим результатом, наблюдаемым при реализации заявленного решения, является расширение функциональных возможностей способа измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным параллельным ему плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, при том что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора. Технический результат - расширение функциональных возможностей датчика давления, повышение его чувствительности. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты. Сущность: в первом цикле измерений излучают электромагнитные волны длины волны λ1 в свободном пространстве, меньшей характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, циклически изменяют конфигурацию полости, выводят часть мощности электромагнитного поля из полости и измеряют среднее за цикл значение выводимой из полости мощности P1 электромагнитного поля на длине волны λ1. Во втором цикле измерений производят излучение электромагнитных волн длины волны λ2 в свободном пространстве, меньшей характерного размера полости и при этом λ2>λ1, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на величину ΔV1 по сравнению с объемом V0 при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности P2 электромагнитного поля на длине волны λ2. В третьем цикле измерений производят излучение электромагнитных волн длины волны λ3 в свободном пространстве, меньшей характерного размера полости и при этом λ3>λ2>λ1, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на величину ΔV1+ΔV2 по сравнению с объемом V0 при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности Р3 электромагнитного поля на длине волны λ3. Осуществляют совместное функциональное преобразование P1, Р2 и Р3 объема и/или массы компонент. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом настоящего изобретения является увеличение функциональных возможностей, включая увеличение чувствительности и точности измерения уровня вещества, упрощения процесса измерения. Технический результат достигается тем, что в предлагаемом способе измерения уровня вещества в емкости, при котором размещают в емкости объемный резонатор, в частности волноводный резонатор, вертикально, уровень вещества в котором равен его уровню в емкости, возбуждают в объемном резонаторе электромагнитные колебания и измеряют их резонансную частоту, в полости резонатора размещают вещество с хотя бы одним частотно-зависимым электрофизическим параметром, частотный диапазон изменения которого выбирают в пределах изменения резонансной частоты резонатора, которое имеет место при заполнении полости резонатора контролируемым веществом, дополнительно изменяют объем емкости как функцию уровня вещества при выполнении стенок емкости сжимаемыми или растягиваемыми на по меньшей мере части длины емкости. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности измерений. Технический результат достигается тем, что в предлагаемом способе измерения скорости потока диэлектрического вещества, перемещаемого по трубопроводу, заключающемся в зондировании потока электромагнитными волнами, приеме электромагнитных волн, рассеянных на неоднородностях вещества и определении доплеровского сдвига частот зондирующих и принимаемых электромагнитных волн, измерении фазовой скорости электромагнитных волн в контролируемом веществе и, путем изменения частоты зондирующих волн, поддержании постоянной величины отношения частоты зондирующих волн и фазовой скорости волн, зондирование потока электромагнитными волнами с их частотой, обеспечивающей поддержание постоянной величины отношения этой частоты и фазовой скорости волн, осуществляют по двум направлениям, образующим между собой прямой угол, доплеровский сдвиг частот зондирующих и принимаемых электромагнитных волн определяют по каждому направлению и находят их среднеквадратичное значение, по которому судят о скорости потока диэлектрического вещества. 1 ил.

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны, воспринимающей измеряемое давление, в первом цикле измерений возбуждают электромагнитные колебания одного из его типов Нnmp (n= 0, 1, 2,…; m= 0, 1, 2,…, p=1 ,2,…) или Еnmp (n= 0, 1, 2,…; m= 1, 2,…, p= 1, 2,…) с ненулевым индексом p и измеряют резонансную частоту ƒ1 электромагнитных колебаний. При этом дополнительно, во втором цикле измерений, возбуждают в этом объемном резонаторе электромагнитные колебания типа Е010 с нулевыми индексами n и p и измеряют резонансную частоту ƒ2 электромагнитных колебаний, производят совместное функциональное преобразование резонансных частот ƒ1 и ƒ2, по результату которого судят об измеряемом давлении. Технический результат - увеличение функциональных возможностей за счет упрощения реализации способа и повышения точности измерения. 1 ил.

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение функциональных возможностей способа измерения за счет повышения точности измерения является техническим результатом изобретения. В способе измерения влагосодержания диэлектрической жидкости в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны фиксированной частоты, которую выбирают выше критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют фазовый сдвиг возбуждаемых и принимаемых электромагнитных волн, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование измеренных амплитуды и фазового сдвига, по результату которого судят о влагосодержании жидкости. 1 ил.

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом изобретения является расширение функциональных возможностей способа измерения за счет повышения точности измерения. В способе измерения влагосодержания диэлектрической жидкости в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны второй фиксированной частоты, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды и на этой частоте производят совместное функциональное преобразование амплитуд, измеренных в первом и во втором тактах измерений, по результату которого судят о влагосодержании жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в предлагаемом способе измерения длины металлической трубы, при котором контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - трубы и данной плоскости возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, при девиации их частоты и измеряют одну из колебательных характеристик отрезка длинной линии, по которой судят о длине металлической трубы, в качестве измеряемой колебательной характеристики используют разность ƒn+p - ƒn резонансных частот fn+p и fn электромагнитных колебаний, соответствующих числам n+р и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии, возбуждаемых последовательно в данном отрезке длинной линии; n=1, 2, …; p=1, 2, …. Техническим результатом изобретения является расширение функциональных возможностей способа измерения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в предлагаемом способе определения длины протяженного металлического изделия, при котором контролируемое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, и в первом такте измерений измеряют резонансную частоту электромагнитных колебаний этого отрезка длинной линии, дополнительно, во втором такте измерений, измеряют резонансную частоту электромагнитных колебаний этого отрезка длинной линии при его замыкании накоротко в одном из его сечений на фиксированной длине от другого разомкнутого конца, производят совместное преобразование измеренных резонансных частот и согласно соотношению , где m=0, 1, 2, …; n=1, 2,…, по результату которого судят о длине протяженного металлического изделия. Техническим результатом изобретения является расширение функциональных возможностей способа измерения вследствие повышения точности измерения длины протяженного металлического изделия. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных возможностей устройства вследствие повышения точности измерения длины протяженного металлического изделия. Устройство для измерения длины протяженного металлического изделия содержит металлическую плоскость с размещенным изолированно над ней контролируемым изделием, совокупность которых образует отрезок длинной линии, генератор электромагнитных колебаний фиксированной частоты, соединенный линией связи с одним из концов отрезка длинной линии, включенные в линию связи направленные ответвители для прямой и отраженной электромагнитных волн, выход каждого из которых подсоединен к соответствующему входу фазового детектора, регистратор. При этом для достижения технического результата включены блок для измерения фазовой скорости электромагнитных волн и вычислительное устройство, выход фазового детектора соединен с первым входом вычислительного устройства, ко второму входу которого подсоединен выход блока для измерения фазовой скорости электромагнитных волн, а к выходу - регистратор. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных возможностей и повышение точности измерений. Способ измерения длины протяженного металлического изделия включает следующие этапы: контролируемое металлическое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают на фиксированной частоте электромагнитные волны ТЕМ-типа как в отрезке длинной линии и измеряют фазовый сдвиг возбуждаемой и отраженной от конца этого отрезка длинной линии электромагнитных волн. По этому фазовому сдвигу судят о длине протяженного металлического изделия и определяют фазовую скорость электромагнитных волн на измерительном участке. Путем изменения фиксированной частоты возбуждаемых в отрезке длинной линии электромагнитных волн поддерживают постоянной величину отношения этой частоты и фазовой скорости электромагнитных волн на измерительном участке. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в предлагаемом способе определения длины протяженного металлического изделия, при котором контролируемое изделие располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - протяженном металлическом изделии и данной плоскости - возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, и в первом такте измерений измеряют резонансную частоту ƒ1 электромагнитных колебаний этого отрезка длинной линии, дополнительно, во втором такте измерений, измеряют резонансную частоту ƒ2 электромагнитных колебаний этого отрезка длинной линии при его одновременном замыкании накоротко в двух его сечениях на фиксированной длине l0 между ними, производят совместное преобразование измеренных резонансных частот ƒ1 и ƒ2 согласно соотношению , где m=1, 2, …; n=1, 2, …, по результату которого судят о длине протяженного металлического изделия. Техническим результатом изобретения является расширение функциональных возможностей способа измерения вследствие повышения точности измерения длины протяженного металлического изделия. 1 ил.

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение области применения. В предлагаемом устройстве для измерения уровня вещества в открытой металлической емкости, содержащем объемный резонатор в виде совокупности полости емкости и подсоединенного снаружи к его открытой поверхности отражателя электромагнитных волн, подключенный к объемному резонатору с помощью по меньшей мере одного элемента связи электронный блок для возбуждения в резонаторе электромагнитных колебаний и измерения его резонансной частоты, отражатель электромагнитных волн выполнен в виде двух или более запредельных волноводов, каждый из которых образован совокупностью отрезка полой металлической трубы, открытой на противоположном торце и имеющей ту же форму поперечного сечения, что и металлическая емкость, и по меньшей мере одной прямоугольной металлической пластины, расположенной вертикально внутри трубы в виде продольной перегородки в поперечном ее сечении и присоединенной к ее внутренней поверхности на обоих противоположных концах этой пластины, имеющей высоту, равную высоте трубы. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических, машиностроительных предприятиях. Сущность заявленного технического решении заключается в том, что в предлагаемом способе измерения внутреннего диаметра металлической трубы, при котором внутри трубы размещают коаксиально с ней металлический стержень, на измерительном участке трубы возбуждают электромагнитные волны в образуемом коаксиальном волноводе, возбуждение электромагнитных волн осуществляют на фиксированной частоте на одном из торцов измерительного участка, а прием распространившихся вдоль него электромагнитных волн - на другом его торце, частоту возбуждаемых электромагнитных волн выбирают меньшей, чем критическая частота возбуждения электромагнитных волн одного из высших типов в образуемом коаксиальном волноводе, и измеряют амплитуду принимаемых электромагнитных волн этого высшего типа, по которой судят о внутреннем диаметре металлической трубы. Частота возбуждаемых электромагнитных волн может быть выбрана меньшей, чем критическая частота возбуждения электромагнитных волн типа H11 в образуемом коаксиальном волноводе. Техническим результатом изобретения является расширение функциональных возможностей способа измерения. 1 з.п. ф-лы, 2 ил.

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают вертикально отрезок длинной линии, возбуждают электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, возбуждают электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых волн и осуществляют совместное функциональное преобразование ƒ и Δϕ. Измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина - разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие среды к его значению при наличии этой среды в емкости, и единицей. 2 ил.

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально два отрезка коаксиальной длинной линии, с оконечными горизонтальными участками фиксированной длины, скачкообразно заполняемыми средами и опорожняемыми при, соответственно, поступлении сред в емкость и их удалении из нее. Возбуждают в отрезках длинной линии электромагнитные колебания на разных резонансных частотах и , которым соответствуют разные распределения энергии электромагнитного поля стоячей волны, и измеряют эти резонансные частоты в зависимости от координаты положения границы раздела двух сред. Между параллельными наружными проводниками отрезков длинной линии возбуждают электромагнитные колебания как в отрезке двухпроводной длинной линии, имеющем на конце его горизонтального участка нагрузочное реактивное сопротивление, отличное от нагрузочных реактивных сопротивлений отрезков коаксиальной длинной линии, измеряют резонансную частоту отрезка двухпроводной длинной линии и производят совместную функциональную обработку. 3 ил.

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В способе определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [ƒ1, ƒ2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, дополнительно, во втором цикле измерений производят излучение электромагнитных волн фиксированной частоты ƒ, для которой длина волны λ в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, измеряют среднее за цикл значение выводимой из полости мощности Р электромагнитного поля на длине волны λ, осуществляют совместное функциональное преобразование N и Р. 2 з.п. ф-лы, 1 ил.

 


Наверх