Патенты принадлежащие Акционерное общество "Омское машиностроительное конструкторское бюро" (RU)

Система предназначена для регулирования подачи топлива в газотурбинный двигатель. На входной дроссель-золотник междроссельной гидравлической проточной камеры резервного канала управления подаётся гидравлическая команда от подпружиненного золотника-корректора, вход которого соединён с клапаном постоянного давления, а пружинная полость образует междроссельную гидравлическую проточную камеру, на входной дроссель которой подаётся гидравлическая команда от пневмогидропреобразователя.

Изобретение относится к области приборостроения и может быть использовано в системах регулирования газотурбинных двигателей. Измеритель расхода содержит корпус с входным и выходным штуцерами, внутри которого помещен генератор колебаний со струйными элементами, выполненный в виде стапелированных пластин, и преобразователь колебаний струи в электрический сигнал, состоящий из контейнера с пьезодатчиком, формирующим электрический сигнал о фактическом расходе рабочей среды, управляющие полости пьезодатчика соединены магистралями с каналами обратной связи струйного генератора, в магистралях установлены конструктивно идентичные жиклеры, магистрали выполнены одинаковой длины и ширины, имеют одинаковое число поворотов на один и тот же угол.

Способ определения расходных характеристик струйных датчиков расхода путем протяжки воздуха из атмосферы через последовательно установленные три датчика и образцовое микросопло, фиксации температуры, давления атмосферного воздуха, разрежения на выходе первого, второго и третьего датчика, выходного сигнала f1 первого датчика.

Изобретение относится к области определения массового расхода воздуха или жидкости (среды) и может быть использовано в энергетике, химической, нефтехимической и других отраслях промышленности. Способ измерения массового расхода путем измерения ротаметром объемного расхода рабочей среды заключается в том, что параллельно ротаметру подключают струйный датчик расхода (СДР), измеряют объемный расход рабочей среды через СДР и рассчитывают массовый расход рабочей среды G по формуле: где QР - объемный расход рабочей среды, проходящий через ротаметр; QСДР - объемный расход рабочей среды, проходящий через СДР; А и В - постоянные коэффициенты, величины которых зависят от геометрических размеров элементов ротаметра и СДР, от материалов из которых изготовлен поплавок ротаметра.

Изобретение относится к области гидравлических агрегатов и может быть использовано в качестве предохранительного клапана объемных насосов нерегулируемой производительности систем топливопитания летательных аппаратов.

Маслосистема газотурбинного двигателя относится к области авиадвигателестроения и обеспечивает уменьшение отказов нагнетающего насоса за счет удаления образующейся в нем воздушной пробки. Удаление воздушной пробки из шестеренной полости нагнетающего насоса обеспечивается за счет изготовления нагнетающего и откачивающего насосов в одном блоке масляных насосов и наличием устройства стравливания воздуха, выполненным в виде канала с жиклёром, расположенным между выходами нагнетающего и откачивающего насосов.

Изобретение относится к насосным агрегатам (НА), применяемым для перекачки жидкостей, преимущественно топлива, для обеспечения силовых установок летательных аппаратов. НА содержит центробежный насос (ЦН) и эжекторный насос (ЭН), установленный соосно перед ЦН.

Изобретение относится к области определения объемного расхода воздуха, в частности определения утечек воздуха через агрегат. Способ измерения ротаметром объемного расхода воздуха через агрегат заключается в том, что воздух от источника высокого давления пропускают в атмосферу через последовательно установленные вентиль, агрегат и ротаметр при расходе, превышающем верхний предел показаний ротаметра, параллельно ротаметру подключают регулируемый дроссель и определяют объемный расход воздуха Q через агрегат по формуле: Q= Qn+(Qn1-Qn2), где Q - объемный расход воздуха через агрегат; Qn - объемный расход воздуха через ротаметр при показании поплавка ротаметра - n; Qn1 - объемный расход воздуха через ротаметр при закрытом регулируемом дросселе; Qn2 - объемный расхода воздуха через ротаметр при открытом регулируемом дросселе.

Изобретение предназначено для измерения температуры газовых потоков, например, в газотурбинном двигателе. Предложенный струйный датчик температуры содержит струйный генератор, снабженный резонансной камерой с разделителем, входным соплом и выпускным отверстием, которое через канал отвода газа соединено с выходным соплом, и преобразователь сигналов, причем канал отвода и выходное сопло струйного генератора расположены в газовой среде, температура которой определяется.
Изобретение относится к области определения объемного расхода газа или жидкости и может быть использовано в теплоэнергетической, газовой и других отраслях промышленности. Способ измерения объемного расхода струйным преобразователем (СПР) заключается в том, что газ или жидкость пропускают через параллельно установленные СПР и ламинарное сопротивление с известными геометрическими параметрами, фиксируют частоту колебаний струйного генератора СПР и определяют объемный расход Q, проходящий по трубопроводу по формуле: Q = QСПР + QЛС = АСПР⋅f + АЛС⋅f2/υ, где QСПР - объемный расход среды, проходящей по трубопроводу через СПР; QЛС - объемный расход среды, проходящей по трубопроводу через ламинарное сопротивление; f - частота колебаний струйного генератора СПР, АСПР - коэффициент пропорциональности, зависящий от геометрических параметров струйного датчика преобразователя; АЛС - коэффициент пропорциональности, зависящий от геометрических параметров ламинарного сопротивления; υ - кинематическая вязкость среды.

Изобретение относится к области авиационных газотурбинных двигателей, использующих блок совмещённых насосов, состоящих из центробежной ступени (ЦС) низкой напорности и шестерённой ступени (ШС) высокой напорности.

Изобретение относится к области машиностроения и может быть использовано для диагностирования технического состояния насоса топливорегулирующей системы газотурбинного двигателя (ГТД). Способ диагностирования насоса топливорегулирования ГТД заключается в том, что на выбранной частоте вращения привода насоса по показаниям датчика расхода (4), установленного в линии выхода насоса и показаниям датчика перепада давлений (2) на насосе определяют эталонное значение производительности насоса при действующем перепаде давлений на насосе.

Двухканальная система топливопитания и регулирования газотурбинного двигателя (ГТД) относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя.

Дозатор газообразного топлива относится к области регулирования газотурбинных двигателей (ГТД), работающих на газообразном топливе, и может быть использован для подачи газообразного топлива в камеру сгорания ГТД.

Двухканальная система топливопитания и регулирования ГТД относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя. Система содержит основной и резервный каналы управления, междроссельную камеру, регулируемые дроссели, клапан постоянного давления на дозаторе, пневмогидропреобразователь.

Двухканальная система регулирования подачи топлива в газотурбинный двигатель относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя.

Изобретение относится к области автоматического регулирования газотурбинных двигателей (ГТД). Устройство управления положением лопаток регулируемого направляющего аппарата (РНА) компрессора газотурбинного двигателя содержит регулируемый выходной дроссель, соединенный через силовой орган с лопатками РНА, датчик отношения абсолютных давлений (ДОАД) с входным соплом подвода высокого давления и каналом подвода низкого давления, струйный усилитель, выходные каналы которого соединены с управляющими полостями силового органа.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) газотурбинных двигателей (ГТД). В процессе штатной работы системы управления (СУ) с помощью встроенной системы контроля (ВСК) ЭР, являющегося одной из составных частей СУ, определяется отклонение фактического значения скорости перемещения дозирующего элемента (ДЭ) гидромеханической части (ГМЧ) СУ от его расчетно-экспериментального значения, при определенных значениях сигнала управления, полученных расчетно-экспериментальным путем, как при увеличении, так и при его уменьшении, и при недопустимом значении этого отклонения в течение наперед заданного времени, определяемого расчетно-экспериментальным путем, формируется сигнал «Отказ канала управления расходом топлива от электронной части системы», переводится управление расходом топлива в двигатель на резервный ГМР.
Наверх