Способ измерения массового расхода

Изобретение относится к области определения массового расхода воздуха или жидкости (среды) и может быть использовано в энергетике, химической, нефтехимической и других отраслях промышленности. Способ измерения массового расхода путем измерения ротаметром объемного расхода рабочей среды заключается в том, что параллельно ротаметру подключают струйный датчик расхода (СДР), измеряют объемный расход рабочей среды через СДР и рассчитывают массовый расход рабочей среды G по формуле: где QР - объемный расход рабочей среды, проходящий через ротаметр; QСДР - объемный расход рабочей среды, проходящий через СДР; А и В - постоянные коэффициенты, величины которых зависят от геометрических размеров элементов ротаметра и СДР, от материалов из которых изготовлен поплавок ротаметра. Технический результат - измерение массового расхода без учета плотности рабочей среды, повышение точности измерения.

 

Изобретение относится к области определения массового расхода воздуха или жидкости (рабочей среды) и может быть использовано в энергетике, химической, нефтехимической и других отраслях промышленности.

Известен способ измерения массового расхода, заключающийся в том, что к струйному дискретному элементу с соплом питания, рабочей камерой, распределителем и двумя каналами обратной связи, входы которых расположены по разные стороны разделителя, а выходы по разные стороны сопла питания подключают преобразователь разности давлений, к выходу которого подключают преобразователь сигнала, в котором выделяют сигнал А, пропорциональный амплитуде пульсаций разности давлений, выделяют сигнал f, пропорциональный частоте пульсаций разности давлений, и определяют величину М массового расхода в устройстве деления величины выделенного сигнала, пропорционального амплитуде пульсаций давления на величину выделенного сигнала, пропорционального частоте пульсаций М=А/f (см. патент SU 1177671 А, G 01F 1/00, от 07.09.85).

Недостатком данного способа является низкая точность определения величины массового расхода из-за низкой точности определения амплитуды пульсаций разности давлений.

Наиболее близким техническим решением является способ определения массового расхода рабочей среды ротаметром, при котором ротаметром определяют объемный расход, затем определяют массовый расход умножением величины объемного расхода на величину плотности среды (жидкости или газа) (см. Кремлевский П.П. «Расходомеры и счетчики количества», машиностроение, 1989 г., стр. 14).

Недостатком данного способа является низкая точность определения массового расхода среды из-за неточности определения плотности рабочей среды, использование справочного значения плотности.

Техническим результатом, на достижение которого направлен способ, является измерение массового расхода без учета плотности рабочей среды и повышение точности измерения.

Для достижения указанного результата в заявленном способе измеряют ротаметром объемный расход рабочей среды, параллельно ротаметру подключают струйный датчик расхода (СДР), измеряют объемный расход рабочей среды через СДР и рассчитывают массовый расход рабочей среды G по формуле:

где QР - объемный расход рабочей среды, проходящий через ротаметр;

QСДР - объемный расход рабочей среды, проходящий через СДР;

А и В - постоянные коэффициенты.

Измерение объемного расхода рабочей среды с помощью ротаметра позволяет определить массовый расход путем подключения параллельно ротаметру СДР, пропуская рабочую среду через ротаметр и параллельно подключенный ему СДР, и рассчитывают массовый расход рабочей среды G по формуле:

где QР - объемный расход рабочей среды, проходящий через ротаметр;

QСДР - объемный расход рабочей среды, проходящий через СДР;

А и В - постоянные коэффициенты.

Способ измерения массового расхода реализуется следующим образом.

Рабочую среду пропускают через ротаметр и параллельно подключенный СДР, определяют объемный расход QР, проходящий через ротаметр и объемный расход QСДР, проходящий через СДР, определяют массовый расход G по формуле

Рассмотрим систему уравнений описывающих работу ротаметра и СДР:

μР и μСДР - коэффициенты расхода местного сопротивления ротаметра и СДР.

У ротаметра перепад на поплавке умноженный на площадь поплавка равен весу поплавка в жидкости, если поплавок из одного материала, без пустот, то

отсюда

т.к.

или

Здесь А и В постоянные коэффициенты, величины которые зависят от геометрических размеров элементов ротаметра и СДР, от материалов из которых изготовлен поплавок ротаметра.

На практике коэффициенты А и В определяют при проведение двух испытаний, при которых фиксируют G1, QР1, QСДР1 и G2, QР2, QСДР2. Сопоставляют два уравнения и находят А и В.

Таким образом, заявленный способ повышает точность измерения массового расход рабочей среды с помощью ротаметра и СДР, что улучшает потребительские качества данного способа. Так же предложенный способ позволяет измерять массовый расход рабочей среды с неизвестной плотностью.

Способ измерения массового расхода путем измерения ротаметром объемного расхода рабочей среды, отличающийся тем, что параллельно ротаметру подключают струйный датчик расхода (СДР), измеряют объемный расход рабочей среды через СДР и рассчитывают массовый расход рабочей среды G по формуле:

G=(QР+QСДР)⋅А/(1+ВQ2СДР),

где

QР - объемный расход рабочей среды, проходящий через ротаметр;

QСДР - объемный расход рабочей среды, проходящий через СДР;

А и В - постоянные коэффициенты.



 

Похожие патенты:

Изобретение относится к рентгенолитографии. Способ изготовления самонесущего рентгеношаблона включает процессы формирования литографическими способами на одной из поверхностей металлической фольги защитной маски из металла, имеющего малую по сравнению с металлом фольги скорость травления в соответствующем составе химически активной плазмы, травящей металл фольги, процессы предварительного принудительного распрямления фольги и ее фиксации посредством клеящего вещества на металлической шайбе, устанавливаемой на рабочем столике установки плазмохимического травления, процесс сквозного травления фольги через защитную маску в установке плазмохимического травления, при этом согласно изобретению в качестве клеящего вещества фиксирующего фольгу на металлической шайбе используют жидкий металл галлий с последующим его отвердеванием при охлаждении сборки: фольга, металл галлий, металлическая шайба - до температуры ниже температуры плавления галлия (Тпл.=29,78°С).

Изобретение относится к области определения объемного расхода воздуха, в частности определения утечек воздуха через агрегат. Способ измерения ротаметром объемного расхода воздуха через агрегат заключается в том, что воздух от источника высокого давления пропускают в атмосферу через последовательно установленные вентиль, агрегат и ротаметр при расходе, превышающем верхний предел показаний ротаметра, параллельно ротаметру подключают регулируемый дроссель и определяют объемный расход воздуха Q через агрегат по формуле: Q= Qn+(Qn1-Qn2), где Q - объемный расход воздуха через агрегат; Qn - объемный расход воздуха через ротаметр при показании поплавка ротаметра - n; Qn1 - объемный расход воздуха через ротаметр при закрытом регулируемом дросселе; Qn2 - объемный расхода воздуха через ротаметр при открытом регулируемом дросселе.
Изобретение относится к области определения объемного расхода газа или жидкости и может быть использовано в теплоэнергетической, газовой и других отраслях промышленности. Способ измерения объемного расхода струйным преобразователем (СПР) заключается в том, что газ или жидкость пропускают через параллельно установленные СПР и ламинарное сопротивление с известными геометрическими параметрами, фиксируют частоту колебаний струйного генератора СПР и определяют объемный расход Q, проходящий по трубопроводу по формуле: Q = QСПР + QЛС = АСПР⋅f + АЛС⋅f2/υ, где QСПР - объемный расход среды, проходящей по трубопроводу через СПР; QЛС - объемный расход среды, проходящей по трубопроводу через ламинарное сопротивление; f - частота колебаний струйного генератора СПР, АСПР - коэффициент пропорциональности, зависящий от геометрических параметров струйного датчика преобразователя; АЛС - коэффициент пропорциональности, зависящий от геометрических параметров ламинарного сопротивления; υ - кинематическая вязкость среды.

Изобретение относится к измерительной технике, а именно к измерению расхода жидкостей, и может быть использовано в автоматизированных системах управления технологическими процессами в воздухоразделительных установках. Устройство измерения расхода жидкости состоит из мерного бачка с приемником жидкости и выходным соплом, снабженным механизмом регулирования площади поперечного сечения, датчика уровня, датчика положения механизма регулирования площади поперечного сечения выходного сопла, блока управления и регистрирующего прибора.

Изобретение относится к измерительной технике, в частности может быть использовано для надежного и точного измерения усилий большой величины в широком диапазоне. Чувствительный элемент содержит упругий цилиндрический стержень, оба конца которого снабжены силовоспринимающими элементами в виде верхней и нижней крышек с выполненными на их внутренних поверхностях коническими выборками заданной конусности, по которым крышки прижаты соответственно к верхней и нижней фаскам заданной конусности, выполненным на упругом цилиндрическом стержне, плавно сопрягающемся с его цилиндрической и торцевыми сферическими поверхностями, и разнонаправленно расположенные с натягом во впадинах нарезки тензорезисторную проволоку сжатия и тензорезисторную проволоку растяжения, причем нарезка под тензорезисторы сжатия выполнена по всей высоте фасок, а нарезка под тензорезисторы растяжения выполнена в местах наложения тензорезисторов сжатия.

Изобретение относится к измерительной технике, а именно к измерению расхода жидкостей, и может быть использовано в автоматизированных системах управления технологическими процессами в воздухоразделительных установках. Способ измерения расхода жидкости основан на сравнении результата измерения уровня жидкости в мерном бачке с заданным значением, в соответствии с его отклонением, регулировании площади поперечного сечения выходного сопла и, при выполнении условия h=hзад, где h - уровень жидкости в мерном бачке, hзад - заданное значение уровня жидкости, определении площади поперечного сечения выходного сопла и расчете расхода жидкости.

Изобретение относится к устройствам для измерения расхода жидких сред, в частности, при диагностировании гидроприводов, гидросистем и гидроагрегатов мобильных и стационарных машин различного назначения. Устройство может использоваться как нагрузочное устройство или как расходомер в приборах для диагностирования гидросистем строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, машин транспортного строительства и других мобильных и стационарных машин, а также при входном контроле гидроагрегатов на заводах, станциях технического обслуживания, мастерских и т.д.

Изобретение относится к измерительной технике и может быть использовано при создании электронных средств измерения. .

Ротаметр // 2334949
Изобретение относится к области контрольно-измерительной техники, а именно к приборам для измерения расхода, и может быть использовано при контрольных замерах жидкости, протекающей по трубопроводам систем закачки воды в пласт при добыче нефти. .

Изобретение относится к измерительной технике, в частности к измерителям расхода и уровня жидкости, и может использоваться в фотоэлектронных расходомерах и уровнемерах поплавкового типа. .

Негерметичный проточный водонагреватель, сконфигурированный таким образом, чтобы предотвратить его повреждение в случае ошибки при монтаже. Водонагреватель содержит бак для воды с нагревательным элементом и нормально открытую выпускную трубу, где выпускная труба снабжена устройством чувствительным к потоку воды, который содержит: односторонний клапан, который позволяет воде течь из бака к наружному концу выпускной трубы, но блокирует поток воды в обратном направлении, и/или выпускной механизм контроля потока воды, выполненным с возможностью выключения нагревательного элемента при обнаружении в выпускной трубе потока воды в сторону бака или отсутствия потока воды.
Наверх