Способы получения "сэндвичевых" слоев (C30B25/22)

C30B     Выращивание монокристаллов (с использованием сверхвысокого давления, например для образования алмазов B01J3/06); направленная кристаллизация эвтектик или направленное расслаивание эвтектоидов; очистка материалов зонной плавкой (зонная очистка металлов или сплавов C22B); получение гомогенного поликристаллического материала с определенной структурой (литье металлов, литье других веществ теми же способами или с использованием тех же устройств B22D; обработка пластмасс B29; изменение физической структуры металлов или сплавов C21D,C22F); монокристаллы или гомогенный поликристаллический материал с определенной структурой; последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой (для изготовления полупроводниковых приборов или их частей H01L); (2110)
C30B25/22                     Способы получения "сэндвичевых" слоев(3)

Способ производства подложки на основе карбида кремния и подложка карбида кремния // 2756815
Изобретение относится к технологии получения подложки из поликристаллического карбида кремния. Способ состоит из этапов предоставления покрывающих слоев 1b, каждый из которых содержит оксид кремния, нитрид кремния, карбонитрид кремния или силицид металла, выбранного из группы, состоящей из никеля, кобальта, молибдена и вольфрама, или покрывающих слоев, каждый из которых изготовлен из фосфоросиликатного стекла (PSG) или борофосфоросиликатного стекла (BPSG), имеющего свойства текучести допированного P2O5 или B2O3 и P2O5, на обеих поверхностях основной подложки 1a, изготовленной из углерода, кремния или карбида кремния для подготовки поддерживающей подложки 1, имеющей покрывающие слои, каждый из которых имеет гладкую поверхность; формирования пленок 10 поликристаллического карбида кремния на обеих поверхностях поддерживающей подложки 1 осаждением из газовой фазы или выращиванием из жидкой фазы; и химического удаления, по меньшей мере, покрывающих слоев 1b в поддерживающей подложке для отделения пленок поликристаллического карбида кремния 10a, 10b от поддерживающей подложки 1 в состоянии отображения гладкости поверхностей покрывающих слоев 1b на поверхности пленок поликристаллического карбида кремния 10a, 10b, и получения пленок поликристаллического карбида кремния 10a, 10b в качестве подложек из поликристаллического карбида кремния.

Способ изготовления составной подложки из sic // 2728484
Изобретение относится к технологии получения составной подложки из SiC с монокристаллическим слоем SiC на поликристаллической подложке из SiC, которая может быть использована при изготовлении мощных полупроводниковых приборов: диодов с барьером Шоттки, pn-диодов, pin-диодов, полевых транзисторов и биполярных транзисторов с изолированным затвором (IGBT), используемых для регулирования питания при высоких температурах, частотах и уровнях мощности, и при выращивании нитрида галлия, алмаза и наноуглеродных тонких пленок.

Способ получения тонких пленок нитрида алюминия в режиме молекулярного наслаивания // 2716431
Изобретение относится к области микро- и наноэлектроники, а более конкретно, к технологии получения эпитаксиальных пленок нитрида алюминия, и может быть применено в области акусто- и оптоэлектроники. Способ заключается в формировании слоя AlN методом молекулярного наслаивания на сапфировой подложке при температуре до 260°С при использовании прекурсоров триметилалюминия (Al(CH3)3) как источника атомов алюминия и гидразина (N2H4) или гидразин хлорида (N2H5Cl) в качестве азотсодержащего прекурсора с последующим отжигом полученной структуры в атмосфере молекулярного азота при температуре до 1400°С.

Монокристаллический синтетический алмазный материал, полученный химическим осаждением из газовой фазы // 2705356
Изобретение относится к синтезу монокристаллического CVD алмазного материала, который может быть использован в оптике, ювелирных изделиях, в качестве подложек для дальнейшего CVD роста алмазов, механических применениях, в области квантового зондирования и обработки информации.

Способ изготовления множества монокристаллических cvd синтетических алмазов // 2697556
Изобретение относится к технологии получения монокристаллических CVD алмазов, которые могут быть использованы для производства линз, призм, частей механического инструмента или драгоценных камней для ювелирных применений.

Способ получения пластины монокристалла нитрида галлия // 2683103
Изобретение относится к технологии получения полупроводниковых материалов, а именно к получению пластин монокристалла широкозонного нитрида галлия (GaN) с гексагональной кристаллической решеткой. Способ получения пластины монокристалла нитрида галлия характеризуется поэтапным формированием слоистой структуры: на первом этапе на подложке Si (111) формируют слой SiC методом замещения атомов с образованием углерод-вакансионных структур, на втором этапе на полученном слое SiC формируют слой GaN N-полярности методом молекулярно-пучковой эпитаксии с плазменной активацией азота, на третьем этапе на слое GaN N-полярности формируют слой AlN Al-полярности методом хлорид-гидридной эпитаксии, на четвертом этапе на слое AlN Al-полярности формируют слой GaN Ga-полярности методом хлорид-гидридной эпитаксии, после чего полученную слоистую структуру выдерживают в щелочном травильном растворе до отделения от нее верхнего слоя GaN Ga-полярности.

Способ подачи газов в реактор для выращивания эпитаксиальных структур на основе нитридов металлов iii группы и устройство для его осуществления // 2673515
Изобретение относится к технологии химического нанесения покрытий путем разложения газообразных соединений, в частности к способам введения газов в реакционную камеру. Способ подачи газов в реактор для выращивания эпитаксиальных структур на основе нитридов металлов III группы включает подачу в реактор 5 по крайней мере двух потоков реакционноспособных газов через вводы 1, 2, по крайней мере один из которых смешивают с несущим газом, при этом в качестве источников металлов третьей группы используют триметилалюминий, триметилиндий, триметилгаллий, триэтилгаллий, или их смеси, а в качестве источника азота - аммиак, при этом перед подачей в реактор 5 потоки газов 1, 2 направляют в по крайней мере одну соединенную с реактором 5 смесительную камеру 3 для приготовления газовой смеси, после чего полученную смесь газов направляют в реактор 5 через формирователь потока 4, выполненный с возможностью подачи газов в реактор 5 в условиях ламинарного потока, причем стенки камеры 3 и формирователь потока 4 нагревают и поддерживают при температуре 40÷400°C, при этом внутренний объем смесительной камеры 3 удовлетворяет соотношению V<Q⋅(Pst/P)4T/Tst)⋅1 с, где V - внутренний объем смесительной камеры, см3; Q - полный суммарный расход газа через камеру, выраженный в см3/с, при стандартных условиях; Pst, Tst - стандартные значения температуры и давления (Р=105 Па, Т=273,15 К); Р - давление в смесительной камере; Т - минимальная температура в смесительной камере.

Алмазное покрытие и способ его осаждения // 2660878
Изобретение относится к микрокристаллическому алмазному покрытию, предназначенному для трибологических областей применения в сфере микромеханики, а также в оптике. Микромеханическая деталь включает подложку, имеющую поверхность с алмазным покрытием, включающим по меньшей мере одну стопку из первого нанокристаллического алмазного слоя с размером зерен на поверхности, меньшим, чем 50 нм, и второго микрокристаллического слоя с размером зерен на поверхности порядка 100 нм, при этом алмазный слой, наиболее приближенный к подложке, является нанокристаллическим, а поверхность алмазов, наиболее удаленная от подложки, является микрокристаллической.

Способ выращивания эпитаксиальных слоев полупроводниковых кристаллов нитридов третьей группы на слоистой кристаллической структуре // 2543215
Изобретение относится к технологии выращивания эпитаксиальных слоев полупроводниковых кристаллов нитридов третьей группы на слоистой кристаллической структуре с оптически ослабленной границей. Предлагаемый способ основан на использовании лазерного излучения с длиной волны и мощностью, подобранными таким образом, чтобы лазерное излучение поглощалось вблизи одной из границ слоистой кристаллической структуры и частично разрушало нитрид третьей группы вблизи этой границы, ослабляя механическую прочность указанной границы и всей слоистой кристаллической структуры.

Способ выращивания эпитаксиальной пленки нитрида третьей группы на ростовой подложке // 2543212
Изобретение относится к области технологии получения твердых кристаллических материалов методом газофазной эпитаксии. При выращивании эпитаксиальной пленки нитрида третьей группы 3 на ростовой подложке 1 используют полиморфный углеродный буферный слой 4, расположенный между подложкой 1 и эпитаксиальной пленкой 3 и состоящий из смеси поликристаллического углерода с преимущественно вертикально ориентированными базисными плоскостями 5, поликристаллического углерода с преимущественно горизонтально ориентированными базисными плоскостями 6 и аморфного углерода 7.

Способ формирования многослойных нанокристаллических пленок с гетерогенной границей раздела и устройство для формирования многослойных нанокристаллических пленок с гетерогенной границей раздела // 2436876
Изобретение относится к области материаловедения и может быть использовано в технологии изготовления металлических, полупроводниковых и диэлектрических материалов и приборов, в частности для нанесения многослойных нанокристаллических тонких пленок этих материалов химическим способом.
 
.
Наверх