Способ определения фосфора

 

Использование: определение фосфора в металлах, сплавах, рудах, концентратах, растворах и водах. Сущность изобретения: при фотометрическом определении фосфора раствор восстановленного гетерокомплекса фосфора обрабатывают водным раствором гидрооксида натрия до рН 7,5 - 10,5, а затем водным раствором серной или соляной кислоты до рН фотометрируемого раствора в интервале 1,0 - 2,5. 1 табл.

Изобретение относится к области аналитической химии, к способам определения фосфора и может быть использовано в различных отраслях промышленности при определении фосфора в металлах, сплавах, рудах, концентратах, растворах и водах.

Известен способ определения фосфора, включающий обработку анализируемой пробы растворами серной кислоты, молибдата аммония и аскорбиновой кислоты с последующей фотометрической регистрацией.

Недостатком способа является недостаточно высокая чувствительность и точность определения.

Цель изобретения - повышение чувствительности и точности определения фосфора. Поставленная цель достигается тем, что при фотометрическом определении фосфора, включающего перевод его в гетерокомплекс действием молибдата и последующего восстановления его действием восстановителя, например аскорбиновой кислоты, гидроксиламина, гидразина, согласно известному способу, раствор восстановленного гетерокомплекса фосфора обрабатывают 20% -ным раствором гидрооксида натрия до рН 7,5-10,5, а затем 45% -ным раствором серной или 30% -ным раствором соляной кислоты до рН фотометрируемого раствора в интервале 1,0-2,5.

Сущность способа заключается в том, что синяя фосфорно-молибденовая кислота или ее соли существуют в растворе в виде двух модификаций: альфа- и бетта- комплексов, развитие окраски которых происходит в различных интервалах кислотности раствора. Если первый комплекс (как и для желтых модификаций гетерокомплексов) формируется в слабокислых растворах с рН 3,5-5,0, то второй в кислых при рН 1,0-2,5. Проведение реакций образования синего гетерокомплекса только в одном интервале по кислотности не позволяет стабилизировать окраску во времени.

Вместе с тем оба комплекса, точнее их модификации, достигают своего максимального развития в указанных интервалах рН растворов при незначительном нагревании до 35-40оС.

Последовательная обработка растворов синего (восстановленного) гетерокомплекса фосфора первоначально раствором гидроксида натрия до рН 7,8-10,5, а затем раствором кислоты до рН 1,0-2,5 позволяет постепенно изменить концентрацию ионов водорода в растворе и нагреть их, то есть соблюсти оптимальные условия развития обеих модификаций гетерокомплекса фосфора, в его восстановленной форме.

Как показали систематические исследования, образование синего гетерокомплекса молибдена и фосфора в растворах в зависимости от рН и температуры растворов, максимальная окраска гетерокомплекса достигается исключительно только при последовательных обработкой его щелочными растворами и последующих обработках его кислотами в указанных интервалах рН.

Из опытных данных установлено, что оптическая плотность восстановленного гетерокомплекса в кислой среде постоянно растет, не достигая насыщения во времени, а в щелочной среде она уменьшается и лишь при дополнительных последовательных обработках восстановленного гетерокомплекса сначала щелочью, а затем кислотой до указанных интервалов рН стабилизируется и становится постоянной во времени.

Расчет молярного коэффициента погашения гетерокомплексного соединения фосфора после последовательных обработок по предложенному способу с применением графического метода Комаря показывает, что он равен 42000, т. е. в 2-2,2 раза выше молярного коэффициента погашения комплекса, получаемого по известному способу.

По предлагаемому решению, а также извстными способами были проанализированы на содержание фосфора различные природные и промышленные объекты: руда, концентраты, стали, сплавы, вода. Перевод соединений фосфора в раствор проводили известными приемами: сплавлением или кислотным разложением.

П р и м е р 1. Аликвотную часть анализируемого раствора, полученного после вскрытия навески пробы, содержащего 0,1-0,5 мкг фосфора, помещают в мерную колбу емк. 100 мл, к ней приливают 0,5 мл серной кислоты 45% -ной концентрации, 10 мл 5% -ного молибдата аммония, через 3-5 мин 5 мл 4% -ного раствора аскорбиновой кислоты. К восстановленному гетерокомплексу добавляют 0,5-10 мл 20% -ного раствора гидрооксида натрия до рН 7,5, а затем 0,5-10 мл 45% -ного раствора серной кислоты до рН 1,5. Объем в колбе доводят до метки дистиллированной водой, перемешивают и измеряют оптическую плотность на спектрофотометре КФК-3 при 890 НМ в кювете толщиной 10 мм относительно холостого опыта. Содержание фосфора рассчитывают по калибровочному графику или с использованием стандартных образцов. Результаты приведены в таблице.

П р и м е р 2. Аналогично примеру 1. Далее к восстановленному раствору гетерокомплекса приливают 0,5-10 мл 20% -ного раствора гидрооксида натрия до рН 80. Далее как в примере 1.

П р и м е р 3. Аналогично примеру 1. Далее доводят рН раствора восстановленного гетерокомплекса до 7,0 действием гидрооксида натрия. Далее как в примере 1.

П р и м е р 5. Аналогично примеру 1. Далее доводят рН раствора восстановленного гетерокомплекса до 11 действием гидрооксида натрия. Далее как в примере 1.

П р и м е р 6. Аналогично примеру 1. Далее доводят рН раствора восстановленного гетерокомплекса до 10,5 действием 20% -ного раствора гидрооксида натрия. Далее как в примере 1.

П р и м е р 7. Аналогично примеру 3. Далее к раствору гетерокомплекса с рН 0 добавляют 0,1-2 мл 45% -ной серной кислоты до рН раствора в колбе 1,0. Далее как в примере 1.

П р и м е р 8. Аналогично примеру 7. Далее добавляют 45% -ный раствор серной кислоты до рН 2,0. Далее как в примере 1.

П р и м е р 9. Аналогично примеру 7. Далее добавляют 45% -ный раствор серной кислоты до рН 2,5. Далее как в примере 1.

П р и м е р 10. Аналогично примеру 7. Далее добавляют 30% -ный раствор солярной кислоты до рН 0,5. Далее как в примере 1.

П р и м е р 11. Аналогично примеру 7. Далее добавляют 45% -ный раствор серной кислоты до рН 0,5. Далее как в примере 1.

П р и м е р 12. Аналогично примеру 7. Далее добавляют 45% -ный раствор серной кислоты до рН 3,0. Далее как в примере 1.

П р и м е р 13. Аналогично примеру 7. Далее добавляют 30% -ный раствор соляной кислоты до рН 1,0.

С применением разработанного способа и известны проанализированы различные образцы эталонов. Данные показывают высокую точность и чувствительность определения фосфора. (56) Авторское свидетельство СССР N 1503005, кл. G 01 N 31/22, 1987.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ФОСФОРА, включающий обработку анализируемой пробы растворами серной кислоты, молибдата аммония и аскорбиновой кислоты, фотометрическую регистрацию, отличающийся тем, что после обработки раствором аскорбиновой кислоты в пробу вводят раствор гидроокиси натрия до рН 7,5 - 10,5, после чего добавляют раствор серной или соляной кислоты до рН раствора 1,0 - 2,5.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к анализу минерального сырья на содержание в нем микропримесей тербия

Изобретение относится к аналитической химии, а именно к изготовлению индикаторных бумаг и полуколичественному определению концентрации железа (II, III) с их помощью в природных, сточных водах и различных жидкостях в полевых условиях

Изобретение относится к аналитической химии, в частности, к методам анализа жидких азотных удобрений, содержащих карбамид и аммиачную селитру в виде их смешанного водного раствора

Изобретение относится к физико-химическим методам контроля получения конденсационных полимеров, а именно к сополимерам метакриловой кислоты и эпоксидиановых смол

Изобретение относится к оптическим газоанализаторам и предназначено для определения различных газов в воздухе производственных помещений зернохранилищ, зерноперерабатывающих предприятий, а также в химической, фармацевтической промышленности и других отраслях

Изобретение относится к области аналитической химии и может быть использовано при определении содержания Os (VIII) в кислых технологических растворах, природных и сточных водах

Изобретение относится к области аналитической химии и может быть использовано при раздельном определении количества Os (VI) и Os (IV) в технологических растворах
Наверх