Лучевой тестер

 

Использование: в средствах высоколокального внутрисхемного контроля и измерения параметров интегральных схем, например, в лазеросканах, электронно-и ионно-лучевых диагностических системах. Сущность изобретения: тестер содержит зондоформирующую систему 1 с блоком питания 2, объектодержатель 3, механизм перемещения 4, блок управления 5, специализированное вычислительное устройство 6, генератор разверток 7, блок преобразования видеосигнала 8, отклоняющие катушки 9, блок сравнения 10. Тестер позволяет исключить из своего состава сложные прецизионные устройства позиционирования и перемещения объектодержателя, заменив их более простыми, дешевыми и надежными элементами. 5 з.п. ф-лы, 6 ил.

Изобретение относится к средствам высоколокального внутрисхемного контроля и измерений параметров, интегральных схем, например, лазеросканам, электронно- и ионно-лучевым диагностическим системам.

Аналогом изобретения является устройство, состоящее из зондоформирующей системы с блоком питания, объектодержателя с механизмом перемещения, генератора разверток с элементами отклонения луча, преобразователя информационного сигнала и индикаторный блок.

Недостатком аналога является сложность диагностики чипов на полупроводниковой пластине до ее разделения. Это обстоятельство обусловлено тем, что прототип не снабжен системой контроля и управления позиционированием объекта контроля.

Прототипом изобретения является устройство, состоящее из зондоформирующей системы с блоком питания, объектодержателя с механизмом перемещения и блоком управления специализированного вычислительного устройства, генератора разверток с отклоняющими катушками и блока преобразования видеосигнала.

Прототипу присущ ряд недостатков. Позиционирование объектодержателя относительно луча осуществляется механически с помощью привода. Такое позиционирование, кроме большой ошибки (порядка десятых долей мкм), характеризуется также низкой производительностью и сложностью конструктивного выполнения, требующего применения в составе прототипа сложных и дорогостоящих систем термостабилизации и устройств определения погрешности позиционирования с обратной связью. Как правило, в качестве таких датчиков используют лазерный интерферометр. Для достижения точностей позиционирования порядка десятых долей мкм прототип должен быть снабжен крайне сложным и дорогостоящим электромеханическим приводом, обеспечивающим такую точность.

Целью изобретения является повышение точности тестера и упрощение его конструкции.

На фиг.1 приведена структурная схема лучевого тестера; на фиг.2 - структурная схема специализированного вычислительного устройства, входящего в состав тестера; на фиг. 3 - структурная схема варианта выполнения блока преобразования; на фиг.4 - структурная схема варианта выполнения блока управления устройства перемещения объектодержателя; на фиг.5 и 6 - варианты выполнения блока сравнения.

На фигурах обозначены: зондоформирующая система 1 с блоком питания 2, объектодержатель 3, механизм перемещения 4 объектодержателя 3 с блоком управления 5, специализированное вычислительное устройство (СВУ) 6, генератор разверток 7, блок преобразования видеосигнала 8, отклоняющие катушки 9, блок сравнения 10, цифроаналоговые преобразователи (ЦАП) 11-15, аналого-цифровые преобразователи 16, 17, контроллеры 18, 19, центральный процессор 20, блок внешней памяти 21, преобразователь информационного сигнала 22, управляемый блок питания 23, усилитель 24, набор корректирующих цепочек 25, умощнители 26-28, генераторы рабочих импульсов 29-31, блок контроллера корректировки 32, индикаторный кинескоп 33, растровые катушки 34, модулятор 35, источники постоянной составляющей токов 36, 37 отклоняющих катушек, компаратор 38, предусилитель 39, оконечный усилитель 40, счетчик строк 41, счетчик нулей 42, компаратор 43, аналого-цифровой преобразователь 44, блок памяти одного кадра 45, схема считывания 46.

Предложенное устройство работает следующим образом: зондоформирующая система (ЗФС) 1 генерирует электронный пучок при подаче на нее питающих напряжений от блока питания 2. Этот пучок используют для зондоформирования полупроводниковой пластины, установленной на объектодержателе 3. Для установки контролируемого чипа пластины, объектодержатель 3 с помощью механизма перемещения 4 перемещают в нужное положение. Для этого на вход блока управления 5 механизма 4 подают управляющий сигнал от СВУ 6. СВУ может представлять собой набор ЦАП 11, 12, 13, 14, 15, 16, 17 контроллеров, выполняющих функции управления 18 блоками прибора и обработки текущей информации 19, центрального процессора 20 и устройства внешней памяти 21, в которой хранится эталонная топология контролируемых чипов и программы тестирования. Конструктивнo ЦАПы 11, 12, 14, 15 могут входить в состав соответственно блоков 2, 7, 10 и 5. После позиционирования объектодержателя 3 со второго и третьего выходов СВУ 6 подается сигнал на вход генератора разверток 7 и блока питания 2 ЗФС 1. При этом включается и фокусируется в плоскости объектодержателя 3 электронный пучок, который под действием сигналов, поступающих с генератора разверток 7 сканируется по поверхности объекта контроля. Возникающее при этом информационное излучение, например, поток вторичных электронов, индуционированный ток и др., с помощью блока преобразования 8 преобразуются в видеосигнал, который поступает на вход блока сравнения 10. Блок преобразования 8 может включать в себя кроме непосредственно преобразователя 22 также блок питания 23, усилитель 24 и набор корректирующих цепочек 25, например, дифференцирующих. Управляющий сигнал от СВУ 6 поступает на вход управляемого блока питания 23, который задает порог тормозного поля преобразователя 22 и/или коэффициент усиления усилителя 24. Преобразованный сигнал с выхода блока 22 через усилитель 24 поступает на блок сравнения 10 либо непосредственно, либо через корректирующую цепочку 25. При непосредственной передаче видеосигнала на блок 10 корректирующая цепочка шунтируется.

На второй вход блока сравнения 10 поступает эталонный видеосигнал тестового изображения контролируемого чипа с четвертого выхода СВУ 6. В блоке сравнения 10 происходит автоматическое или полуавтоматическое определение сдвига одного изображения относительно другого. Например, при полуавтоматическом режиме работы блок сравнения 10 может быть выполнен в виде схемы, приведенной на фиг. 5. На экране индикаторного кинескопа 33 формируется изображение реального типа (сигнал поступает на модулятор 35 от блока 8) и тестовое изображение (сигнал от СВУ 6 через предусилитель 39 и оконечный усилитель 40 поступает на модулятор 35). С помощью блоков 36 и 37, на генератор разверток подаются регулируемые постоянные токовые сигналы, обеспечивающие сдвиг поля растра по поверхности объектодержателя. То есть, используя регулировочные элементы Х и Y блоков 36 и 37, можно добиться совмещения на экране тестового и реального изображений. Соответствующие им видеосигналы поступают на входы компаратора 38, который введен для устранения органолептических ошибок совмещения, обусловленных индивидуальными особенностями зрения оператора. Амплитудное согласование видеосигналов в компараторе обеспечивается предусилителем 39, а на экран оконечным усилителем 40. При совпадении изображений соответствующий сигнал с компаратора 38 будет поступать на вход СВУ 6 в течение времени, намного превосходящего длительность развертки одной строки растра. Это состояние фиксируется СВУ 6, которое дает остановку перемещения растра и переводит тестер в режим измерения.

Описанные операции эквивалентны подаче корректирующего сигнала с выхода блока сравнения 10 на вход генератора разверток 7, который, подавая соответствующий сигнал на отклоняющие катушки 9, входящие в состав ЗФС 1, смещает электронный пучок. Аналогично при автоматическом сравнении двух видеосигналов, блок 10 вырабатывает корректирующий сигнал, который с его выхода поступает на вход генератора разверток 7. Кроме того, со второго выхода блока 10 соответствующий сигнал рассогласования подается либо на вход СВУ 6, либо на вход блока управления 5, который при переходе к следующему чипу подает соответственно меньшее или большее (скорректированное) число шаговых импульсов на механизм 4 перемещения объектодержателя 3.

В первом варианте предусматривается традиционное выполнение блока управления 5, содержащего генераторы рабочих импульсов 29, 30, 31, которые вырабатывают под действием внешней команды шаговые импульсы для управления шаговыми двигателями (ШД), осуществляющими перемещение объектодержателя 3 по трем координатам. Для электрического согласования ШД и блоков 29-31, на выходах последних размещают умножители 26-28. В этом случае электрическая связь блоков 5 и 10 отсутствует, а корректировка числа шагов следующего перемещения осуществляется с помощью СВУ 6.

Во втором варианте выполнения блока 5, в соответствии с фиг.4 в состав блока 5 введен процессорный блок 32. Управляющий сигнал на перемещение объектодержателя 3, поступающий в блок 32, корректируется сигналом, подаваемым в него от блока 10, а объектодержатель 3 перемещают с учетом погрешности позиционирования предшествующего перемещения.

При выполнении блока сравнения 10 в соответствии с фиг.6, устройство работает следующим образом. По команде от СВУ 6 генератор разверток 7 вырабатывает сигнал сканирования n-ой строки. Возникающее при этом информационное излучение с помощью блока 8 и АЦП 44 преобразуется в цифровой видеосигнал, который в форме последовательности, состоящей из М (М - число элементов разложения строки) электрических импульсов, заносится в ячейки блока памяти одной строки 45. Далее с помощью схемы считывания 46 эти сигналы последовательно считываются из блока 45 и поступают в компаратор 43. На второй вход компаратора 43 синхронно с последовательностью импульсов реального видеосигнала от СВУ 6 поступает последовательность импульсов эталонного видеосигнала. Компаратором 43 может быть схема вычитания. На выходе компаратора размещен счетчик нулей 42, который подсчитывает число последовательно поступивших "0", возникающих при совпадении амплитуд импульсов. Если их число менее некоторого начально заданного значения io при io < M, то на устройство считывания 46 от СВУ 6 поступает сигнал и считывание, и сравнение последовательностей импульсов реального видеосигнала повторяется, начиная со второго его элемента (импульса) и так до М - iо. Если и в этом случае i < io, то для этой же строки все повторяется, но каждый следующий цикл считывания осуществляется с задержкой подачи импульсов реального видеосигнала на время, равное считыванию одного, двух и т.д. импульсов видеосигнала из блока 45. И так до M - io раз. Если и в этом случае i < io, то это говорит о том, что позиционирование осуществлено с ошибкой в направлении, совпадающем с кадровой разверткой растра. Тогда от 6 поступает сигнал на 7 и сканируется n+1 строка и операции повторяются вплоть до n+no (no не более числа строк разложения растра Np). Если и в этом случае i < io, то по сигналу от 6 генератор 7 начинает перебор строк в другую сторону, т.е. сканируются последовательно n-1; n-2; n-3 и т.д. строки с выполнением всех перечисленных выше операций. В результате будет найдена строка Nc = n+k и сдвиг строк i = M - ic, при котором число последовательно поступивших на блок 42 нулей (т.е. совпадение видеосигналов) i io. Это значит, что объектодержатель 3 позиционирован с погрешностью в направлении кадровой развертки k = k Hk/Np и в направлении строчной развертки c = i Hc/M, где Нк и Нс - протяженность растра на поверхности тестируемого объекта в направлении кадровой и строчной разверток; Np, M - число строк в растре и число элементов разложения строки соответственно.

Установление величин k и i фиксируется СВУ 6, которое генерирует соответствующие корректирующие сигналы и подает их на блок 7 для совмещения растра с объектом контроля.

После завершения операции по точному установлению электронного пучка относительно механически позиционированного объектодержателя 3 с выхода блока сравнения 10 командный сигнал поступает на вход СВУ 6, которое, в свою очередь, запускает программу тестирования, подавая управляющие сигналы на блок питания 2 и генератор разверток 7. При этом включается пучок, который по командам с СВУ 6 облучает тестируемые участки объекта, а зарегистрированные информационные сигналы преобразуются в блоке преобразования 8 в видеосигнал, а функция преобразования последнего задается управляющей программой, заложенной в СВУ 6, для чего с выхода последнего поступает соответствующий сигнал на вход блока преобразования 8. После облучения всех заданных точек (узлов чипа) в рамках одного растра, с СВУ 6 поступает прерывающий пучок сигнал на вход блока 2 и управляющий сигнал на вход блока 5, под действием которого объектодержатель 3 перемещается в следующее положение для контроля следующего участка чипа или нового чипа.

Предложенное техническое решение позволяет исключить из состава тестера сложные и прецизионные устройства позиционирования и перемещения объектодержателя, заменив их более простыми, дешевыми и надежными элементами.

Формула изобретения

1. ЛУЧЕВОЙ ТЕСТЕР, состоящий из блока управления тестером, соединенного через блок питания с зондоформирующей системой, через генератор разверток с отклоняющими катушками, через блок управления механизмом привода и механизм перемещения с объектодержателем, с блоком определения погрешности позиционирования объектодержателя и через генератор разверток с индикаторным блоком, который в свою очередь соединен с блоком преобразования видеосигнала, отличающийся тем, что, с целью повышения точности тестера и упрощения его конструкции, блок определения погрешности позиционирования объектодержателя выполнен в виде блока сравнения, входы которого соединены с выходами блока преобразования видеосигнала, генератора разверток, а выходы - с входами генератора разверток и блока управления механизмом привода.

2. Тестер по п.1, отличающийся тем, что блок сравнения состоит из индикаторного кинескопа с модулятором и растровыми катушками, двух источников постоянного тока отклоняющих катушек, снабженных регулировочными элементами, компаратора, предусилителя и оконечного усилителя, причем выходы источников постоянных токов соединены с входами генератора разверток, выход которого соединен с растровыми катушками и компаратором, выход которого соединен с входом блока управления, а выход последнего через последовательно соединенные предусилитель и оконечный усилитель соединен с модулятором, который соединен с выходом блока преобразования видеосигнала, второй выход предусилителя соединен с входом компаратора.

3. Тестер по п.1, отличающийся тем, что, с целью повышения точности и быстродействия тестера, блок сравнения включает в себя счетчик строк, счетчик нулей, аналого-цифровой преобразователь, компаратор, блок памяти одной строки и блок считывания, причем вход аналого-цифрового преобразователя соединен с выходом блока преобразования видеосигнала, а его выход через последовательно соединенные блок памяти одной строки, устройство считывания, компаратор и счетчик нулей соединен с входом специализированного вычислительного устройства, второй вход которого соединен с выходом счетчика строк, вход которого электрически соединен с выходом генератора развертки, выходы блока управления тестером соединены с вторыми входами компаратора и блоком считывания, а второй выход последнего - с вторым входом блока памяти одной строки.

4. Тестер по п.1, отличающийся тем, что блок управления тестером состоит из блока внешней памяти, соединенного с центральным процессором, который через контроллер управления тестером соединен с пятью цифроаналоговыми преобразователями, выходы которых соединены с блоками питания зондоформирующей системы, блоком управления механизмом перемещения объектодержателя, генератором разверток, блоком преобразования видеосигнала и блоком сравнения, а через контроллер обработки информации центральный процессор соединен с двумя аналого-цифровыми преобразователями, которые в свою очередь соединены с выходами блока питания зондоформирующей системы и блока сравнения.

5. Тестер по п.1, отличающийся тем, что блок преобразования видеосигнала состоит из преобразователя информационного сигнала с управляемым блоком питания, усилителя и набора корректирующих цепочек, причем входы последовательно соединенных преобразователя и усилителя соединены с выходами управляемого блока питания, а вход последнего соединен с выходом блока управления тестером, выход усилителя через набор корректирующих цепочек соединен с входом блока сравнения.

6. Тестер по п.1, отличающийся тем, что, с целью повышения удобства эксплуатации, блок управления механизмом привода объектодержателя содержит три усилителя мощности, три генератора рабочих импульсов и блок контроллера корректировки, причем один вход последнего соединен с выходом блока сравнения, а второй - с выходом блока управления тестером, с другим выходом которого соединен вход генератора рабочих импульсов, два входа блока контроллера корректировки соединены с входом генераторов рабочих импульсов приводов, выходы генераторов рабочих импульсов через усилители мощности соединены с соответствующими им приводами.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля сложных объектов и технологических процессов

Изобретение относится к измерительной технике и предназначено для контроля технического состояния сглаживающего фильтра

Изобретение относится к контрольно-измерительной и испытательно-исследовательской технике и может быть использовано для технического диагностирования при климатических испытаниях электронной аппаратуры

Изобретение относится к контрольно-испытательной технике и может быть использовано для проверки контактирования при проведении контроля КМОП-БИС

Изобретение относится к контрольно-измерительной технике

Изобретение относится к классу устройств для контроля и диагностики параметров тиристорных преобразователей, управление которыми осуществляется на базе микропроцессорной техники

Изобретение относится к области теплового неразрушающего контроля силовой электротехники, в частности тиристоров тиристорных преобразователей, и предназначено для своевременного выявления дефектных тиристоров, используемых в тиристорных преобразователях, без вывода изделия в целом в специальный контрольный режим
Изобретение относится к области диагностирования силовой электротехники, в частности тиристорных преобразователей, и предназначено для поддержания надежности тиристорного преобразователя на требуемом уровне и своевременного выявления дефектных тиристоров, используемых в тиристорных преобразователях, без вывода последних в специальный контрольный режим

Изобретение относится к импульсной технике и может быть использовано в качестве устройства диагностики при проведении пусконаладочных работ, эксплуатации и ремонте устройств автоматики и вычислительной техники на микросхемах эмиттерно-связанной логики (ЭСЛ)

Изобретение относится к автоматике и вычислительной технике для диагностики состояния объекта по результатам преобразования детерминированных и случайных сигналов и может быть использовано в телеметрических системах с эвакуируемыми накопителями информации ("черный ящик") и радиоканалом для передачи катастрофических отказов

Изобретение относится к области электронной техники и может быть использовано для диагностирования разветвленных электронных цепей

Изобретение относится к способам электрического контроля и испытаний на постоянном и переменном токе с последующей отбраковкой подложек из диэлектрика или полупроводника, содержащих изделия электронной техники и электротехники (электрорадиоизделия), содержащих плоские и объемные проводящие области, содержащих активные и пассивные функциональные элементы в виде полупроводниковых приборов, многослойных трехмерных структур, пленок с различным типом электрической проводимости, жидкокристаллических панелей и др

Изобретение относится к автоматике и контрольно-измерительной технике и может быть использовано для контроля и поиска неисправностей в цифровых электронных устройствах

Изобретение относится к автоматике и вычислительной технике и может быть использовано для контроля работоспособности цифровых блоков и схем, поиска и локализации в них неисправностей как в процессе регулировки, так и в процессе эксплуатации
Наверх