Способ переработки газов, содержащих диоксид серы, с получением серной кислоты

 

Изобретение относится к области получения серной кислоты из отходящих газов и может быть использовано в цветной металлургии, химической и энергетической отраслях промышленности. Серную кислоту получают из газов, содержащих диоксид серы, кислород и влагу, путем конверсии диоксида серы при пропускании газов через зону плазменного образования, создаваемую импульсным линейно - стабилизированным поверхностным разрядом. При этом длительность импульса тока разряда составляет 1 - 100 мкс, а величину удельной энергии, подводимой к разряду за один импульс устанавливают равной 103-105 Дж на 1 м длины межэлектродного расстояния. Способ позволяет повысить степень конверсии диоксида серы при полном использовании электрической энергии разряда. 1 ил. 1 табл.

Изобретение относится к области по- лучения серной кислоты из отходящих газов, содержащих диоксид серы, кислород и влагу, и может быть использовано в цветной металлургии, химической и энергетической отраслях промышленности.

Известен способ получения серной кислоты, согласно которого в печь для сжигания элементной серы подается сжатый воздух под давлением 0,5 МПа. Образованный газ с концентрацией 12 об.% SO2 проходит котел-утилизатор и газовый фильтр и затем с температурой 430oC поступает в контактное отделение, где по схеме ДКДА происходят процессы конверсии и абсорбции газа под давлением. На выходе из последнего абсорбера газ подогревают до 500oC, пропуская через два теплообменника и подают на турбину для сброса давления. Отходящий газ сернокислотной установки сбрасывается в атмосферу. Общая степень конверсии газа на двух стадиях составляет 99,85%.

Недостаток этого способа заключается в сложности аппаратурного оформления.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату, является известный способ получения серной кислоты, по которому смесь газов, содержащая диоксид серы, кислород и влагу пропускается через несколько локальноограниченных, отделенных одна от другой зон плазменных образований. Для создания последних применяются дуговые или коронные, или тихие разряды. Разряды генерируются между двумя электродами.

Недостатком известного способа является то, что при воздействии на газовую смесь применяемых типов электрических разрядов инициируются, в основном, плазмохимические реакции конверсии диоксида серы, характеризующиеся значительными потерями энергии разряда на нагрев смеси. Следствием этого является низкая степень конверсии диоксида серы.

Данное изобретение направлено на решение задачи, заключающейся в получении серной кислоты из газов, содержащих диоксид серы, кислород и влагу.

Технический результат, который может быть получен при использовании изобретения и заключается в повышении степени конверсии диоксида серы при полном использовании электрической энергии разряда.

Технический результат достигается тем, что в известном способе получения серной кислоты из газов, содержащих диоксид серы, кислород и влагу, путем окисления диоксида серы при пропускании газов через локальноограниченную зону плазменного образования, создаваемую электрическим разрядом, генерируемым между двумя электродами, согласно предлагаемому способу, в качестве электрического разряда используют импульсный линейно стабилизированный поверхностный разряд, при этом длительность импульса тока разряда составляет 1-100 мкс, а величину удельной энергии, подводимой к разряду, за один импульс устанавливают равной 103-105 Дж на 1 м длины межэлектродного расстояния.

Использование импульсного линейно стабилизированного поверхностного разряда с предлагаемыми интервалами энергомощностных параметров обеспечивает трансформацию подведенной к разряду электрической энергии в формируемое локально ограниченное плазменное образование, являющееся источником многофакторного воздействия на исходную газовую смесь: потока ультрафиолетового излучения с спектрально-яркостной температурой, равной 20-25 кК; электронов и ионизованных частиц со средней энергией 2-5 эВ; ударной волны с давлением на фронте до 50 МПа, распространяющейся по окружающему газу со скоростью до 2-3 км/с.

Воздействие ультрафиолетового излучения с длинами волн = 200-340 нм, являющейся основной частью всего потока излучения плазмы разряда с спектрально-яркостной температурой 20-25 кК обеспечивает селективную фотохимическую конверсию SO2 SO3 без потерь энергии излучения основной среде. Протекание реакции преобразования SO3+H2O H2SO4 в условиях повышенных давлений также селективно ускоряются.

Указанное воздействие на исходную газовую смесь вызывает инициацию фотохимических и плазмохимических процессов, протекающих в зоне повышенного давления, что обеспечивает практически полную конверсию диоксида серы при полном использовании электрической энергии разряда.

Выбор граничных интервалов энергомощностных параметров импульсного линейно-стабилизированного поверхностного разряда ЛСПР - длительность импульса тока разряда p = 1:100 мкс и удельной энергии подводимой к разряду за один импульс равной 103 - 105 Дж/м длины межэлектродного промежутка, обусловлен следующим.

При p < 1 мкс и > 105 Дж/м происходит разрушение узла ЛСПР, что приводит к прекращению процесса конверсии диоксида серы.

При p > 100 мкс и > 103 Дж/м уменьшается степень конверсии диоксида серы из-за ослабления эффективности воздействия разряда.

На чертеже представлена схема реализации способа.

Схема состоит из промывной башни 1 корпуса реактора 2 с расположенными в нем электродами 3, установленными на концах разрядной планки 4 абсорбера 5 с орошающим устройством 6, электрофильтра 7, сборника кислоты 8, холодильника 9 и насоса 10.

Способ осуществляется следующим образом.

Газ, поступающий из промывной башни 1, содержащий 1-40 об.% SO2, кислород и влагу подается в реактор 2 с температурой до 35oC. В реакторе 2 между электродами 3, размещенными в его корпусе непосредственно в газовой смеси генерируется линейно стабилизированный поверхностный разряд с импульсно-периодическим режимом срабатывания с длительностью следования импульса p = 1-100 мкс и удельной энергией, подводимой к разряду за один импульс = 103-105 Дж/м межэлектродного расстояния. После кратковременной стадии пробоя вдоль разрядной планки 4 формируется плазменное образование.

Кванты света от разрядной плазмы эффективно вызывают акты электронного возбуждения, ионизации, диссоциации атомов и молекул диоксида серы, кислорода, воды окружающего разряд газа, обеспечивая тем самым наработку химически активных свободных радикалов.

Генерируемая плазменным образовани ем вслед за световым потоком ударная волна распространяется в фотовозбужденную окружающую среду, где в соответствии с принципом Ле-Шарелье проходит до конца реакция образования серной кислоты H2O + SO2 + 1/2 O2 = H2SO4.

Образуемая серная кислота в виде капель и аэрозоля серной кислоты подается в абсорбер 5, где сорбируется орошаемой серной кислотой и стекает в сборник кислоты 8, откуда подается частично на циркуляцию насосом 10 через холодильник 9 и орошающее устройство 6.

Из абсорбера 5 газ направляется в скоростной мокрый электрофильтр 7 с охлаждаемыми осадительными электродами для санитарной очистки от токсичных веществ и удаления избыточной влаги из газового потока после чего выбрасывается в атмосферу. Уловленный продукт возвращают в сборник кислоты 8.

П р и м е р. Газовую смесь с расходом 2,5 10-4 м3/c, с содержанием 15 об. % SO2, 15 об.% H2O, 10 об.% O2 и остальное азот, с температурой 25-35oC подают в реактор длиной 0,5 м с внутренним диаметром 0,15 м. При пропускании через реактор на нее воздействуют импульсным линейно стабилизированным поверхностным разрядом с длительностью импульса тока разряда 10 мкс, удельной энергией, подводимой к разряду за один импульс 0,75 104 Дж/м и средней электрической мощностью 250 Вт.

Разряд создают между двумя электродами с расстоянием между ними 0,5 м при подаче напряжения 50 кВ. При степени конверсии, равной 99,9%, количество извлеченного из газовой смеси диоксида составляет 6,59 г/мин. Диоксид серы выделяют в виде 98,3%-ной серной кислоты в количестве 10,1 г/мин ( 1,83 г/см3).

Экспериментальная проверка способа и полученные данные, в сравнении с прототипом, представлены в таблице. Эксперименты проводили в условиях изменения основных параметров электрической цепи в диапазонах: электроемкость батареи конденсатора 1,5 40 мкФ, начальное напряжение на разряде 25-52 кВ, скважность импульса разряда > 2 c.

Таким образом, по сравнению с прототипом, предлагаемый способ позволяет: повысить степень конверсии диоксида серы до 99,9% (в прототипе 80,0%); снизить расход электроэнергии в 4-8 раз.

Кроме того, использование способа позволяет автоматизировать процесс.

Формула изобретения

СПОСОБ ПЕРЕРАБОТКИ ГАЗОВ, СОДЕРЖАЩИХ ДИОКСИД СЕРЫ, С ПОЛУЧЕНИЕМ СЕРНОЙ КИСЛОТЫ, включающий конверсию диоксида серы в присутствии кислорода и влаги пропусканием газов через локально-ограниченную зону плазменного образования, создаваемую электрическим разрядом, генерируемым между двумя электродами в газовой смеси, отличающийся тем, что в качестве электрического разряда используют импульсный линейно-стабилизированный поверхностный разряд, при этом длительность импульса тока разряда составляет 1-100 мкс, а величину удельной энергии, подводимой к разряду за один импульс, устанавливают равной 103 - 105 Дж на 1 м длины межэлектродного расстояния.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к средствам управления процессом получения сернистого газа, может быть использовано в производстве серной кислоты и позволяет снизить потери сырья за счет стабилизации производительности процесса

Изобретение относится к способам автоматического управления абсорбционным процессом в производстве серной кислоты в химической промышленности и позволяет повысить экономическую эффективность процесса за счет повышения степени улавливания серного ангидрида

Изобретение относится к автоматизации производственных процессов, может быть использовано в химической промышленности в системах автоматизации процессов обжига серного колчедана в печах с кипящим слоем и позволяет снизить потери серы

Изобретение относится к автоматизации производственных процессов, в частности к автоматизации процессов в производстве серной кислоты контактным методом, может быть исполь зовано в химической промышленности и позволяет снизить потери серы.Система автоматического управления процессами сернокислотного произэодства содержит контуры регулирования расхода воздуха и температуры в печах обжига , расхода, концентрации и температуры сернистого газа на входе в контактный аппарат, а также датчики сигнализации работы печей и датчики температуры газа на входе и выходе всех слоев катализатора контактного аппарата

Изобретение относится к автоматизации химико-технологических процессов , может быть использовано в химической промышленкости в печных агрегатах сернокислотных производств и позволяет стабилизировать производительность процесса

Изобретение относится к автоматизации технологических процессов сернокислотного производства ,в частности, процесса осушки сернистого газа, и может быть использовано в химической пром

Изобретение относится к способу автоматического контроля состояния теплообменной аппаратуры, может быть использовано в химической промышленности и позволяет повысить точность контроля

Изобретение относится к аппаратурному оформлению абсорбционной установки в технологической схеме производства серной кислоты

Изобретение относится к очистке газов, в частности к способу десульфуризации газообразной среды

Изобретение относится к способу получения серной кислоты и может быть использовано в нефтеперерабатывающей, газоперерабатывающей, металлургической и других отраслях промышленности

Изобретение относится к способу получения серной кислоты
Изобретение относится к разрушению углеродистых материалов, содержащихся в композициях, более конкретно изобретение применимо для удаления двуокиси углерода из газообразных и жидких композиций

Изобретение относится к химическим технологиям, в частности к получению серной кислоты и аммиака из сульфата аммония, и может быть использовано для расширения возможностей переработки сульфата аммония, образующегося при утилизации отходов производств. Способ получения аммиака и серной кислоты из сульфата аммония включает термическое разложение сульфата аммония на гидросульфат аммония и аммиак, изготовление раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат, осаждение двойного сульфата, отделение двойного сульфата, полученный раствор разбавленной серной кислоты очищают, предпочтительно осаждением примесей, отделяют примеси, очищенный раствор разбавленной серной кислоты упаривают до получения товарной серной кислоты, двойной сульфат разлагают на сульфат аммония, который возвращают на термическое разложение, и на вспомогательный сульфат, который возвращают для получения раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат. Изобретение позволяет расширить возможности утилизации сульфата аммония, упростить производство аммиака и серной кислоты из сульфата аммония, исключить образование при производстве серной кислоты экологически опасного сернистого газа. 17 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения серной кислоты с помощью сероводорода. Способ включает в себя следующие этапы: (1) проведение окислительно-восстановительной реакции между исходным газообразным H2S и кислородом, содержащимся в обогащенном кислородом воздухе для получения SO2, при контролировании остаточного кислорода после этапа окислительно-восстановительной реакции в молярной концентрации ≥2%; (2) охлаждение продукта, полученного на этапе (1) до температуры 390-430°С, и затем осуществление реакции каталитического окисления с кислородом, при этом реакция каталитического окисления осуществляется поэтапно, пока степень конверсии SO2 не составит ≥98.7% или пока концентрация SO2% на выходе не составит 550 мг/м3 в нормальных условиях; и (3) охлаждение продукта, полученного на этапе (2), до температуры на ≥10°C выше температуры точки конденсации паров H2SO4, затем дальнейшее охлаждение до температуры 60-120°С, сбор полученного H2SO4 и осуществление коалесцирующей сепарации газа, полученного после охлаждения, перед непосредственным его выпуском в атмосферу. Изобретение позволяет обеспечить высокую эффективность удаления сероводорода. 9 з.п. ф-лы, 7 ил.

Изобретение относится к химической промышленности. Способ включает сернокислотное разложение сырья. Жидкую фазу обрабатывают реагентом, осаждающим полезный компонент до получения осадка и раствора сульфата аммония. Осадок отделяют и обрабатывают до выделения вещества, образующего с аммиаком реагент, содержащий ион аммония и осаждающий полезный компонент. Сульфат аммония обрабатывают и получают аммиак. Выделенные из осадков вещества и аммиак возвращают на производство. Сульфат аммония обрабатывают термически, получают аммиак и гидросульфат аммония, изготавливают раствор гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат, который осаждают до получения неочищенного разбавленного раствора серной кислоты, отделяют этот двойной сульфат, разлагают на сульфат аммония, который возвращают для разложения на гидросульфат аммония и аммиак, и на вспомогательный сульфат, который возвращают для получения раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат. Изобретение позволяет уменьшить образование отходов, снизить потребление серной кислоты. 29 з.п. ф-лы, 5 пр.
Наверх