Устройство для неразрушающего измерения толщины диэлектрических и полупроводниковых пленок в фиксированной точке

 

Изобретение относится к измерительной технике и предназначено для определения толщины прозрачных пленок. Целью изобретения является расширение области применения за счет резкого сокращения времени измерения толщины пленок. Монохроматическое излучение направляется на образец при непрерывном изменении угла падения луча с помощью плоского вращающегося зеркала, двух эллиптических зеркал, через фокус одного из которых проходит ось вращения плоского зеркала, а в фокусе второго-приемник излучения, и наблюдается изменение интенсивности отраженного излучения путем построения интерференционной кривой, по числу максимумов которой определяется толщина пленки в облучаемой точке образца. 1 ил.

Изобретение относится к измерительной технике, предназначено для быстрого измерения толщины твердых и жидких диэлектрических и полупроводниковых пленок и покрытий в диапазоне 10 мкм - 1 мм и может использоваться в научных исследованиях.

Известны устройства и приборы, позволяющие определять толщину диэлектрических и полупроводниковых пленок неразрушающими методами [1], [2].

Известно устройство для измерения однородных толщин прозрачных твердых и жидких пленок интерферометрическим методом, содержащее лазер, фотоприемник и пантограф [3].

Это устройство позволяет измерять толщину пленки путем получения информации из угловой зависимости интенсивности отраженного от пленки луча света лазера. В частности толщина пленки t определяется из соотношения t = где - длина волны лазера; M - число периодов изменения интенсивности (число пиков угловой зависимости интенсивности); 1 и 2 - пределы изменения угла падения луча на пленку; () = 2 n - показатель преломления пленки.

Угол падения с помощью такого устройства измеряют поднимая и опуская верхний шарнирный узел пантографа, на соединительных звеньях (плечах) которого симметрично (относительно образца - пленки) расположены излучатель-лазер и приемник, сигнал с которого подается на самописец.

Недостатки этого устройства следующие: существенные погрешности измерений, возникающие из-за большого числа движущихся деталей и сочленений, предопределенные выбором конструкции в виде пантографа для изменения угла падения луча; большая длительность процесса измерений и вследствие этого низкая скорость, что не позволяет измерять надежно толщины жидких пленок, снижает производительность измерений, и резко сужает диапазон возможного применения; установка лазера на подвижном пантографе влечет возможность отказов лазера в процессе измерений и нарушения в оптической схеме падающего и отраженного лучей, что неизбежно ухудшает точность измерений.

Целью изобретения является расширение области применения интерферометрического метода измерений за счет сокращения времени измерений и повышение производительности. Благодаря этому возможно измерение толщины не только твердых пленок, но и толщины жидких пленок, у которых она меняется со временем.

На чертеже изображено предложенное устройство.

Оно содержит неподвижный источник излучения - лазер 1, плоское вращающееся зеркало 2; неподвижные эллиптические зеркала 3 и 6; держатель образца (пленки) 4; приемник излучения 7 и осциллограф 8.

Ось вращения электродвигателя, на которой закреплено вращающееся зеркало 2, лежит в плоскости зеркала 2 и проходит через верхний фокус F1 эллиптического зеркала 3, а держатель 4 образца установлен так, чтобы облучаемая (фиксированная) точка образца 5 находилась в совмещенных нижних фокусах F2 и F3 зеркал 3 и 6. Приемник излучения находится в верхнем фокусе F4 зеркала 6.

Работает устройство следующим образом.

Луч лазера 1 падает в точку на плоском вращающемся зеркале 2, совмещенную с фокусом F1, отразившись от которого он последовательно (вследствие непрерывного вращения зеркала 2) "скользит" по поверхности эллиптического зеркала 3, все время отражаясь в одну и ту же точку (но под разными углами) образца, находящуюся в нижнем фокусе F2 зеркала 3. Отраженное от образца (пленки) 5 излучение попадает на эллиптическое зеркало 6, от которого отражается в одну и ту же точку (верхний фокус F4 зеркала 6), в которой находится фотоприемник 7, сигнал с которого попадает на вход осциллографа 8, на экране которого наблюдают угловую зависимость интенсивности отраженного от образца излучения. Из углового расстояния между пиками этой зависимости определяют толщину пленки.

Диапазон изменения угла падения в устройстве задан, он определяется положением концов первого эллиптического зеркала. Толщина пленки t определяется по указанной формуле по числу пиков M на полученной зависимости.

В предлагаемом устройстве имеется всего один подвижный элемент - плоское вращающееся зеркало, скорость вращения которого достаточно высока (в области > 50 об/с). Время изменения угла падения (время развертки) в пределах от 5 до 70о в фиксированной точке образца является очень малым 0,001 с. Это на четыре порядка меньше, чем аналогичный параметр в известном устройстве. Благодаря такой высокой скорости измерения толщины пленок предлагаемое устройство расширяет диапазон применения в сравнении с прототипом.

Формула изобретения

УСТРОЙСТВО ДЛЯ НЕРАЗРУШАЮЩЕГО ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ И ПОЛУПРОВОДНИКОВЫХ ПЛЕНОК В ФИКСИРОВАННОЙ ТОЧКЕ, содержащее источник монохроматического излучения и последовательно установленные по ходу излучения держатель образца и приемник излучения и электрически с ним связанный регистратор, отличающееся тем, что, с целью повышения производительности и расширения диапазона измеряемых толщин, оно снабжено электродвигателем с установленным на нем плоским зеркалом так, что ось вращения зеркала параллельна его поверхности, оптически связанной с источником излучения, двумя эллиптическими зеркалами, одно из которых установлено последовательно по ходу излучения между плоским зеркалом и держателем так, что ось вращения плоского зеркала проходит через один из фокусов эллиптического зеркала, второй фокус которого лежит в плоскости держателя, второе эллиптическое зеркало размещено последовательно по ходу излучения между держателем и приемником излучения так, что в одном из его фокусов установлен приемник, а второй совпадает с вторым фокусом первого эллиптического зеркала, и осциллографом, связанным входом с выходом приемника.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано в легкой промышленности для автоматизации процесса сортировки кож

Изобретение относится к измерительной технике и может быть использовано в легкой промышленности для автоматизации процесса сортировки кож

Изобретение относится к измерительной технике и может быть использовано для контроля толщины плоского проката и ленточных материалов

Изобретение относится к измерительной технике и может быть использовано в самолетных системах контроля загрязнения нефтью морской поверхности и в очистных сооружениях портов и промышленных предприятий

Изобретение относится к измерениям с использованием оптичебких средств

Изобретение относится к измерительной технике и предназначено для определения толщины полупроводниковых слоев (прозрачных пленок) в электронной промышленности, в частности для измерения толщины мембран в тензодатчиках, и может быть использовано в приборостроении и машиностроении

Изобретение относится к измерительной технике и может быть использовано при определении плотности объектов

Изобретение относится к оптическому приборостроению и предназначено для неразрушающего контроля толщин слоев при изготовлении покрытий на оптических деталях

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения толщины и показателя преломления прозрачных слоев

Изобретение относится к измерительной технике и может быть использовано для бесконтактного автоматического измерения толщины прозрачных материалов, например листового стекла, в непрерывном производственном процессе

Изобретение относится к измерительной технике, а именно к оптическим интерферометрам, и может быть использовано для непрерывного бесконтактного измерения геометрической толщины прозрачных и непрозрачных объектов, например листовых материалов (металлопроката, полимерных пленок), деталей сложной формы из мягких материалов, не допускающих контактных измерений (например, поршневых вкладышей для двигателей внутреннего сгорания), эталонных пластин и подложек в оптической и полупроводниковой промышленности и т.д

Изобретение относится к оптическим способам измерения толщин слоев прозрачных жидкостей и может быть использован для бесконтактного определения толщин слоев прозрачных жидкостей в лакокрасочной, химической и электронной промышленности, а также в физических и химических приборах

Изобретение относится к измерительной технике, а именно к интерференционным способам измерения оптической толщины плоскопараллельных объектов и слоев

Изобретение относится к контрольно-измерительной технике и может быть использовано в черной и цветной металлургии для измерения толщины проката в условиях горячего производства без остановки технологического процесса

Изобретение относится к контрольно-измерительной технике и предназначено для неразрушающего контроля толщины пленок, в частности в устройствах для измерения и контроля толщины пленок фоторезиста, наносимых на вращающуюся полупроводниковую подложку в процессе центрифугирования в операциях фотолитографии

Изобретение относится к контрольно-измерительной технике и предназначено для неразрушающего контроля толщины и измерения разнотолщинности пленок, в частности в устройствах для нанесения фоторезиста в операциях фотолитографии

Изобретение относится к оптическим способам измерения толщины слоя прозрачной жидкости
Наверх