Полевой источник ионов

 

Изобретение относится к аналитическому приборостроению и может быть использовано для высокочувствительного масс-спектрометрического анализа жидкостей. Сущность изобретения заключается в том, что из сосуда 6 исследуемую жидкость 5 наносят в виде капли на мембрану 1, внешняя поверхность которой находится при атмосферном давлении, Мембрана 1, представляющая собой ядерный фильтр, покрытый тонким слоем защитной жидкости 2, отделяет атмосферу от вакуумного объема камеры 4 масс-спектрометра. Благодаря малому диаметру пор ядерного фильтра и выбору защитной жидкости 2 со специальными свойствами, эта жидкость не протекает сквозь поры ядерного фильтра под действием атмосферного давления и обеспечивает транспорт ионов и испарение их в вакууме. Под действием электрического поля, создаваемого электродами 7 и 8, один из которых находится в исследуемой жидкости 5, а другой в вакууме, ионы из исследуемой жидкости 5 проходят слой защитной жидкости 2, эмиттируются в ваккум и ускоряются в направлении к масс-анализатору. Технологические и конструкторские особенности технического решения обеспечивают проведение анализа жидкостей при потоке нейтральных молекул 1015 мол./с, попадающих в камеру масс-спектрометра. Это позволяет значительно уменьшить массу и габариты устройства. 2 ил.

Изобретение относится к аналитическому приборостроению и может быть использовано для высокочувствительного анализа микропримесей в жидкостях при атмосферном давлении, в частности в водных растворах.

Известен полевой источник ионов для анализа состава жидкостей, содержащий сосуд с анализируемой жидкостью и натекатель, один конец которого подсоединен к вакуумной системе [1]. Основным узлом источника является одиночный натекатель, выполненный в виде капилляра, по внутреннему каналу которого исследуемая жидкость поступает в область ионообразования. Ионы, содержащиеся в растворе, выделяются в результате электрогидродинамического распыления жидкости в электрическом поле, создаваемом вблизи острия иглы-капилляра.

Недостаток такого источника состоит в том, что из-за большого диаметра канала капилляра 0,1-0,5 мм поверхность жидкости является неустойчивой в электрическом поле, при котором наблюдается образование ионов в вакууме. Это приводит к преимущественному образованию не ионов, а заряженных капель, и большому разбросу ионов по энергии, что затрудняет масс-спектрометрический анализ ионов и снижает его точность. Кроме того, при анализе жидкостей с высоким давлением насыщенного пара, например водных растворов, происходит замерзание жидкости на конце капилляра, обращенного в вакуум, что вызывает большую нестабильность ионного тока.

Известно устройство для масс-спектрометрического анализа жидкостей, в котором ионы из жидкостей сначала испаряются в результате электрораспыления в газ при атмосферном давлении, а затем вводятся в вакуумную камеру масс-спетрометра с помощью системы сопло-скиммер [2].

Недостаток такого способа состоит в том, что вместе с ионами в вакуум попадает большое число нейтральных молекул из атмосферы. Поэтому для поддержания в камере масс-спектрометра разрежения, необходимого для работы прибора, требуется использование мощных насосов.

Известен источник ионов, содержащий сосуд для анализируемой жидкости и натекатель ионов, включающий электроды и ядерный фильтр [3]. Источник выполнен в виде проточной камеры, на торце которой установлен ядерный фильтр (полимерная пленка с поперечными порами) с нанесенным на него со стороны проточной камеры металлическим покрытием. Ядерный фильтр с порами, заполненными жидкостью, выполняет функцию источника ионов. Ионы эмиттируются из жидкости в вакуум под действием электрического поля, создаваемого электрическим напряжением между металлическим покрытием на ядерном фильтре и сеткой, расположенной в вакууме. Достаточно сильное для испарения ионов поле формируется благодаря малому диаметру пор и низкой по сравнению с жидкостью электропроводностью полимерной пленки. Этот источник является наиболее близким к предлагаемому по технической сущности и достигаемому эффекту.

Существенный недостаток известного источника состоит в том, что круг исследуемых объектов ограничен только жидкостями с низким давлением насыщенного пара. Для жидкостей с высоким давлением насыщенного пара, например для водных растворов, испарение в вакуум приводит к замерзанию жидкости в порах ядерного фильтра и к их разрушению.

Целью изобретения является расширение технологических возможностей анализа жидкостей при атмосферном давлении как с низким, так и с высоким давлением насыщенного пара.

Указанная цель достигается тем, что в полевом источнике ионов, содержащем сосуд для анализируемой жидкости и натекатель ионов, включающий электроды и ядерный фильтр, на ядерный фильтр со стороны сосуда с исследуемой жидкостью нанесен слой защитной жидкости с давлением насыщенного пара менее 1,3 Па, коэффициентом поверхностного натяжения более 30 мН/м и углом смачивания поверхности ядерного фильтра со стороны вакуума ( ) более 20о, при этом толщина слоя защитной жидкости составляет а=(3-30)h, а диаметр пор ядерного фильтра, выраженный в нм, составляет 5sin , где h - расстояние от мембраны до электрода, установленного в камере масс-спектрометра; - коэффициент поверхностного натяжения защитной жидкости, мН/м.

При указанных конструктивных особенностях обеспечиваются следующие необходимые и достаточные условия для достижения поставленной цели: жидкость в порах выдерживает разность давлений p = 4sin > 1 атм; испарение защитной жидкости в порах не приводит к ее замерзанию на границе жидкость - вакуум и к быстрому уменьшению толщины защитного слоя; через мембрану можно осуществить эффективный транспорт ионов исследуемой жидкости, помещенной в виде капли на слой защитной жидкости, в направлении к масс-анализатору.

Существенным для достижения высокой эффективности транспорта ионов из исследуемой жидкости в вакуум является использование высокой плотности пор (N) и малой толщины слоя защитной жидкости (d). Эти условия необходимы для того, чтобы ионы, образующиеся в защитном слое в результате электролитической диссоциации, не рекомбинировали с ионами, транспортируемыми из исследуемого образца, и составляли малую часть в полном потоке эмиссии ионов в вакуум, поскольку =de/i, где i - плотность тока эмиссии; - скорость электролитической диссоциации в защитной жидкости; е - заряд электрона.

Величина i растет с ростом N. Однако при большой плотности пор, когда N>108 шт. /cм2, происходит перекрывание пор, что приводит к протеканию жидкости сквозь мембрану.

Другое условие состоит в отсутствии электрода на поверхности ядерного фильтра, обращенного к атмосфере. Это условие необходимо для того, чтобы предотвратить рекомбинацию на электроде ионов, транспортируемых из исследуемой жидкости.

На фиг.1 показана принципиальная схема предлагаемого полевого источника ионов; на фиг.2 - узел I на фиг.1.

Полевой источник ионов содержит мембрану 1, выполненную из ядерного фильтра, покрытого слоем защитной жидкости 2. Мембрана вакуумно-плотно закрывает входное отверстие 3 камеры масс-спектрометра 4 и отделяет вакуумированный объем от атмосферы. Исследуемую жидкость 5 наносят в виде капли на слой защитной жидкости 2 из сосуда 6. Электрическое поле создают с помощью электрода 7, погруженного в исследуемую жидкость, и металлической сетки 8, расположенной в камере масс-спектрометра.

На фиг. 2 показан участок мембраны, где 9 - поры ядерного фильтра, заполненные защитной жидкостью 2; 10- ионы исследуемого образца, двигающиеся под действием электрического поля через слой защитной жидкости 11 к границе жидкость-вакуум; 12 - ионы, эмиттированные из мембраны 1.

Ядерный фильтр изготовлен из полиэтилентерефталатной пленки (лавсан) толщиной 10 мкм. Пленка облучалась пучком ионов Ar40 с энергией 1 МэВ/нуклон, ориентированным перпендикулярно поверхности пленки. Отверстия диаметром 10-50 нм получены путем травления в 1 М растворе щелочи КОН. Плотность пор составляет 3.106 см-2. В качестве защитной жидкости использовали глицерин. Толщина слоя защитной жидкости на ядерном фильтре - 10-2 см, расстояние между сеткой в вакууме и мембраной 0,03-0,1 см, потенциал на сетке 1-5 кВ.

Источник ионов работает следующим образом.

На поверхность защитного слоя жидкости 2 (глицерина) из сосуда 6 наносят каплю исследуемой жидкости 5. Под действием электрического поля, создаваемого с помощью электродов 7 и 8, ионы из исследуемого образца проходят слой защитной жидкости и испаряются в вакуум. Сильное электрическое поле, 106-107 В/см, необходимое для эффективного испарения ионов из жидкости, формируется благодаря эффекту усиления электрического поля, возникающему в использованной системе - пора, заполненная проводящей средой (жидкостью), в неполярном диэлектрике (полимерная основа мембраны). Такая система по распределению электрических полей подобна тонкой металлической игле, напряженность электрического поля на конце которой значительно превышает среднюю величину.

Масс-спектpометрический анализ ионов в жидкостях, нанесенных при атмосферном давлении на мембрану, проводят на времяпролетном масс-спектрометре.

П р и м е р 1. Водный раствор соли KJ, концентрация соли равна 210-3 моль/л, объем образца 10-3 мл. В области масс 100-350 а.е.м. основными ионами, эмиттированными мембраной, являются ионы типа J-Gn, где n 2, G - молекула глицерина (М=92).

П р и м е р 2. Водный раствор аскорбиновой кислоты АОН, концентрация 10-1 моль/л. Основными ионами в области масс 100-300 а.е.м. являются ионы АО- (135) и АО-G (227).

П р и м е р 3. Раствор гибберилина (346) в метиловом спирте. В области масс 200-500 а.е.м. основные ионы имеют массу 345 и принадлежaт протонированной форме гибберилина.

Полный ток эмиссии ионов из мембраны в этих экспериментах составлял 10-9-10-8 А. Скорость натекания нейтральных молекул через мембрану не превышала 1015 мол./с.

Как показали исследования, преимущество изобретения состоит в том, что поток нейтральных молекул в вакуум при примерно одинаковом токе ионной эмиссии оказывается меньше 1015 мол./с, в то время как в известных случаях 1,2 - более 1019 мол. /с. Малая величина потока нейтралей связана с тем, что слой защитной жидкости препятствует как проникновению молекул из атмосферы, так и испарению в вакуум молекул исследуемой жидкости. Эта особенность позволяет использовать при создании вакуума, необходимого для работы масс-спектрометра, менее мощные насосы, что представляется важным для разработки портативных средств масс-спектрометрического анализа жидкостей, в частности анализа микропримесей в водных растворах.

Формула изобретения

ПОЛЕВОЙ ИСТОЧНИК ИОНОВ, содержащий сосуд для анализируемой жидкости и натекатель ионов, включающий электроды и ядерный фильтр, отличающийся тем, что, с целью расширения функциональных возможностей анализа жидкостей при атмосферном давлении как с низким, так и с высоким давлением насыщенного пара, на ядерный фильтр со стороны сосуда с исследуемой жидкостью нанесен слой защитной жидкости с давлением насыщенного пара мерее 1,3 Па, коэффициентом поверхностного натяжения более 30 мН/м и углом смачивания поверхности ядерного фильтра со стороны вакуума более 20o, при этом толщина слоя защитной жидкости составляет a = (3 - 30)h, а диаметр пор ядерного фильтра соответствует выражению
v 5 sin ,
где h - расстояние от мембраны до электрода, установленного в камере масс-спектрометра, м;
- коэффициент поверхностного натяжения защитной жидкости, мН/м.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к физическим методам исследования материалов и используется для анализа микрочастиц, объемных образцов, нелетучих органических соединений, биологических объектов, поверхностных загрязнений и дефектов

Изобретение относится к аналитическому приборостроению, а именно к элементному анализу материалов, основанному на масс-спектрометрии вторичных частиц, распыляемых при ионном облучении поверхности

Изобретение относится к контрольноизмерительной технике и может быть использовано для масс-спёктромётрического определения колебательных температур нейтральных молекул

Изобретение относится к приборостроению, в частности - к масс-спектрометрам, и может быть использовано для газового анализа в металлургии, экологии, медицине, электронной промышленности и других отраслях

Изобретение относится к электрофизике, в частности к системам, служащим для разделения изотопов, например, для разделения тяжелых изотопов

Изобретение относится к приборостроению, в частности к масс-спектрометрии, и может быть использовано для контроля процессов, протекающих с выделением газовой фазы, например, в черной и цветной металлургии

Изобретение относится к ядерной технике, а более конкретно касается разделения заряженных частиц и выделения изотопов из их естественной смеси

Изобретение относится к вакуумной технике

Изобретение относится к разделению частиц (кластеров) по их массам на фракции газодинамическими силами c последующим их улавливанием на выходе сверхзвукового сопла

Изобретение относится к электрофизике, в частности к системам, служащим для разделения изотопов, например для разделения тяжелых изотопов (атомная масса А>>1)

Изобретение относится к аналитическому приборостроению, а именно к многоколлекторным магнитным масс-спектрометрам, предназначенным для качественного и количественного анализа примесей в матрицах сложного состава, в частности в качестве детектора газового хроматографа с высокоэффективными капиллярными колонками
Наверх