Способ подготовки основания

 

Использование: при подготовке оснований фундаментов зданий и сооружений, возводимых на просадочных и структуронеустойчивых грунтах. Сущность изобретения: способ подготовки основания включает образования скважин с установкой инъекторов, замачивание, уплотнение и армирование массива грунта твердеющим раствором через гидроразрыв. Замачивание, уплотнение и армирование грунтового массива производят в одну стадию при подачи твердеющего раствора через направленный разрыв. Армирование выполняют в виде системы вертикальных регулируемых плоских элементов повышенной жесткости. В качестве замачивающего, уплотняющего и армирующего раствора могут использовать вспененный твердеющий цементно-грунтовый раствор. 1 з.п.ф-лы, 6 ил.

Изобретение относится к области строительства, в частности к способам подготовки оснований фундаментов зданий и сооружений, возводимых на просадочных и структурнонеустойчивых грунтах, и может быть использовано как при новом строительстве, так и при стабилизации неравномерных осадок аварийных сооружений.

Известен способ закрепления лессового просадочного грунта путем одновременного нагнетания закрепляющего раствора в две смежные скважины с интенсивностью повышения давления 0,1 - 0,5 МПа в минуту, позволяющий оптимальным способом получить вертикальную плоскость разрыва грунта, через которую производится последующая пропитка грунта в зоне закрепления. После нагнетания заданного объема крепящего раствора ведут нагнетание тампонажного, например, цементного раствора, заполняя им стволы скважин, плоскость разрыва и другие возможные трещины в грунте (авт.св. N 1227767. Способ закрепления лессового просадочного грунта, 1986).

Недостатком известного способа является использование двух растворов (химического закрепляющего и тампонажного), необходимость их раздельного нагнетания в две стадии, а также низкая его эффективность при закреплении и уплотнении грунтов с разной степенью влажности. Кроме того, дефицитность и высокая стоимость химических реагентов обуславливает высокую сметную стоимость строительных работ по подготовке основания.

Известны аэродинамические цементно-песчаные составы, используемые для гидроизоляции и содержащие 50% быстротвердеющего портланд-цемента с М 500, 50% морского песка и 0,1 - 0,15 (от веса цемента) вспенивателя при водоцементном отношении 0,32 - 0,37 (Соколовский В.Г. Аэрированные цементно-песчаные растворы и их применение в строительстве. - Л.: Стройиздат, 1972, 70 с.).

Основными недостатками состава являются дефицитность и достаточно высокая стоимость (в том числе и за счет транспортных расходов) его основных компонентов - морского песка и высокомарочного быстротвердеющего портланд-цемента.

Наиболее близким из известных решений по технической сущности и достигаемому эффекту к предлагаемому способу (прототип) является способ улучшения массива лессового просадочного грунта в основании зданий и сооружений, включающий образование скважин с установкой инъекторов, нагнетание в грунт улучшающего раствора с замачиванием и уплотнением массива. При этом после введения улучшающего раствора в грунт производят нагнетание в него твердеющего материала, например, цементно-песчаного раствора, причем нагнетание улучшающего раствора ведут с гидроразрывом грунта, а в качестве улучшающего грунт раствора используют пульпу из улучшаемого грунта с содержанием его 15 - 30% (авт. св. N 1294910, Способ улучшения массива лессового просадочного грунта в основании зданий и сооружений, 1987).

Недостатком известного способа является его многостадийность и трудоемкость, так как замачивание и уплотнение массива производится отдельно приготовляемым улучшающим раствором (грунтовая пульпа), а армирование - твердеющим материалом в виде цементно-песчаного раствора, который нагнетается во вторую стадию. Ввиду этого, исключается возможность замачивания, уплотнения и армирования грунтового основания в водную стадию с использованием единого состава, а также значительно повышается стоимость работ. Кроме того, ввиду неуправляемого гидроразрыва получаемая каркасно-ячеистая структура из уплотненных и упрочненных элементов не имеет четко выраженной формы, что не позволяет с достаточной степенью надежности обеспечивать однородность армирования и гарантировать повышенную несущую способность основания (Багдасаров Ю. А., Четыркин Н.С., Грачев Ю.А. Об устройстве оснований на грунтах II типа по просадочности методом "геотехногенный массив". - Основания, фундаменты и механика грунтов, N 6, 1988).

Целью изобретения является упрощение технологии, повышение надежности армирования и сокращение стоимости работ.

Указанная цель достигается тем, что в известном способе подготовки основания, включающем образование скважин с установкой инъекторов, замачивание, уплотнение и армирование массива грунта твердеющим раствором через гидроразрыв замачивание, уплотнение и армирование грунтового массива производят одновременно в одну стадию при подаче твердеющего раствора через направленный гидроразрыв, а армирование выполняют в виде системы вертикальных регулируемых плоских элементов повышенной жесткости.

Другое отличие состоит в том, что в качестве замачивающего и армирующего раствора применяют вспененный твердеющих цементно-грунтовый раствор следующего состава: твердая фаза (вес.%, цемент 19,95 - 44,95, грунт 80 - 55, ПАВ 0,05), вода, количество которой определяют по формуле где количество воды, необходимое для приготовления твердеющего раствора с учетом замачивания массива грунта объемом Vгр, м3, до оптимальной влажности Wопт; 0,5 - весовое соотношение воды и твердой фазы уплотняющего и армирующего раствора, д.е.; Pтф - вес твердой фазы твердеющего раствора, необходимой для уплотнения и армирования грунтового массива объемом Vгр, т; плотность воды, равная 1,0 т/м3; ск - плотность сухого грунта уплотняемого массива в пределах площадки, т/м3; Wгр - влажность грунта уплотняемого массива, д.е.

На фиг. 1 - 3 показаны варианты подготовки основания в виде системы вертикальных регулируемых плоских элементов повышенной жесткости, создаваемых через направленный разрыв под плитный, ленточный и круглый фундамент. На фиг. 4 - под ленточный фундамент с использованием концентратора напряжений 4. На фиг. 5 и 6 - разрезы 1-1, 2-2 соответственно.

Предлагаемый способ подготовки основания осуществляется в следующей последовательности.

Сначала в массиве грунта в соответствии со схемами, приведенными на чертежах, проходятся скважины 1 с установкой инъектора. Затем, одним из известных способов выполняется направленный гидроразрыв путем подачи вспененного цементно-грунтового раствора. При этом замачивание, уплотнение и армирование производят в одну стадию в процессе нагнетания твердеющего раствора, состоящего из твердой фазы (вес.%, цемент 19,95 - 44,95, грунт 80 - 55, ПАВ 0,05) и воды, количество которой определяется по вышеприведенной формуле с учетом замачивания до оптимальной влажности Wопт уплотняемого массива грунта 2 объемом Vгр. Раствор поступает в плоскость разрыва, избыток воды с добавкой ПАВ в процессе нагнетания отфильтровывается в окружающий грунт, замачивая его, а твердая фаза, заполняя плоскость разрыва и расширяя ее, уплотняет окружающий массив и формирует элемент повышенной жесткости 3. Высота, длина и толщина элемента может регулироваться объемом подаваемого раствора. Вспененный цементно-грунтовый раствор в плоскости разрыва твердеет под давлением и превращается в цементно-грунтовый камень с заданными характеристиками, армируя основание. Степень армирования (A %) задается в зависимости от необходимости несущей способности основания N, схемы размещения армирующих элементов (фиг. 1 - 4), прочности цементно-грунтового камня Rцг и уплотняемого грунта Rгр и может рассчитываться по формуле Таким образом, предлагаемый способ позволяет производить подготовку основания путем замачивания, уплотнения и армирования грунтового массива в одну стадию при подаче твердеющего состава, а также выполнять армирование в виде системы вертикальных регулируемых плоских элементов повышенной жесткости. Упростить технологию и сократить стоимость работ позволяет предлагаемый твердеющий состав за счет новых концентрационных характеристик, недифицитности компонентов (грунтов различного литологического типа, обыкновенных портландцементов марки 300 - 400) и расчетной оптимизации их расхода.

В качестве примера конкретного выполнения способа рассмотрим порядок операций при стабилизации неравномерных осадок грунтов основания жилого дома в г. Ростове-на-Дону.

В основании ленточных фундаментов залегали насыпные грунты мощностью 1,6 м, подстилаемые глинами. Армирование выполнялось в виде системы вертикальных плоских элементов по схеме, изображенной на фиг. 4. При этом расстояние между плоскостями разрыва было принято 1,0 м, а размеры элементов составили: высота - 1,6 м, длина 1,3 м, толщина 0,07 м.

Работы выполнялись следующим образом.

Сначала согласно вышеуказанной схемы были пройдены скважины с установкой инъектора переменного сечения с резцом, обеспечивающего создание направленного разрыва под фундаментом согласно авт. свид. N 1444473. Направленный разрыв происходил при нагнетании вспененного твердеющего цементного-грунтового раствора с интенсивностью подъема давления 0,1 - 0,5 МПа в минуту.

Для увлажнения, уплотнения и армирования грунтового массива в одну стадию в каждый инъектор подавалось 290 л раствора, состоящего из твердой фазы (цемент марки 400 - 57 кг, суглинок 132,9 кг, ПАВ - сульфанол НП-1 - 0,1 кг) и воды, количество которой было рассчитано по формуле (1) при следующих исходных данных:
Pтф = 0,190 т; ск = 1,2т/м3; ; Wгр = 0,26; Wопт = 0,28; Vгр = 3,3 м3; ;

Таким образом, для замачивания, уплотнения и армирования 3,3 м3 грунтового массива был использован вспененный цементно-грунтовый твердеющий раствор следующего состава: твердая фаза : цемент 30%, грунт 69,95%, ПАВ 0,05%, вода 175 л.

При подаче вспененного раствора через направленный гидроразрыв (Pразр = 2,8 - 3,0 атм) под давлением 1,3 - 1,8 атм в течение 20 мин избыток воды отфильтровывался в окружающий грунт, замачивая его до оптимальной влажности, а твердая фаза, заполняя плоскость разрыва под давлением и расширяя ее, уплотняет окружающий массив и формирует армирующий элемент повышенной жесткости с заданными параметрами. Вспененный цементно-грунтовый раствор в плоскости разрыва твердеет под давлением и превращается в цементно-грунтовый камень с прочностью Rцг = 3,0 МПа. Несущая способность армированного основания при вышеописанных параметрах составила (см. формулу 2)

где A = 0,7%, Rгр = 0,1 МПа; Rгц = 3,0 МПа.

Таким образом, за счет использования предлагаемого способа несущая способность была увеличена в 3,0 раза.

Положительный эффект от использования предлагаемого способа подтверждается технико-экономическим расчетом. Стоимость уплотнения и армирования 1 м3 грунта по предлагаемому способу (прототип) приведена в таблице.

Как видно из таблицы, сметная стоимость уплотнения и армирования 1 м3 грунта по предлагаемому способу на 47; меньше, чем по известному способу (прототип).

При годовом объеме работ 50000 м3 экономический эффект составит 139000 руб. (в ценах 1991 г).

Таким образом, предлагаемый способ подготовки основания позволяет за счет совмещения операций по замачиванию, уплотнению и армированию грунтового массива при подаче вспененного цементно-грунтового раствора через направленный гидроразрыв упростить технологию, повысить надежность армирования и сократить стоимость и сроки работ.


Формула изобретения

1. Способ подготовки основания, включающий образование скважин с установкой инъекторов, замачивание, уплотнение и армирование массива грунта твердеющим раствором через гидроразрыв, отличающийся тем, что, с целью упрощения технологии, повышения надежности армирования и сокращения стоимости работ, замачивание, уплотнение и армирование грунтового массива производят в одну стадию при подаче твердеющего раствора через направленный гидроразрыв, а армирование выполняют в виде системы вертикальных регулируемых плоских элементов повышенной жесткости.

2. Способ по п.1, отличающийся тем, что в качестве замачивающего, уплотняющего и армирующего раствора применяют вспененный твердеющий цементногрунтовый раствор следующего состава: твердая фаза (вес.%, цемент 19,95 - 44,95, грунт 80 - 55, ПАВ 0,05) : вода, количество которой определяют по формуле

где количество воды, необходимое для приготовления твердеющего раствора с учетом замачивания до оптимальной влажности Wопт массива грунта объемом Vгр, м3;
0,5 - весовое соотношение воды и твердой фазы уплотняющего и армирующего раствора, д.е.;
Pтф - вес твердой фазы твердеющего раствора, необходимой для уплотнения и армирования грунтового массива, объемом Vгр, т;
плотность воды, равная 1,0 т/м3;
ск - плотность сухого грунта уплотняемого массива в пределах площадки, т/м3;
Wгр - влажность грунта уплотняемого массива, д.е.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

NF4A Восстановление действия патента

Дата, с которой действие патента восстановлено: 20.02.2012

Дата публикации: 20.02.2012




 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения вертикальных смещений сооружений

Изобретение относится к дорожному строительству, в частности к составам для обеспыливания, гидрофобизации и укрепления грунтовых дорог различного назначения, кюветов и откосов, также к способам упрочнения, обеспыливания и гидрофобизации грунта

Изобретение относится к нефтегазодобывающей промышленности и строительству подземных сооружений, в частности к составам для укрепления слабосцементированных, рыхлых пористых пластов, грунтов, и может быть использовано для укрепления призабойной зоны пласта у скважины, предназначенной для добычи углеводородов или строительства подземных сооружений

Изобретение относится к области строительства и может быть использовано при строительстве и реконструкции оснований дорог, аэродромов, фундаментов зданий и сооружений, создании противофильтрационных экранов и буронабивных свай

Изобретение относится к строительству и может быть использовано при устройстве оснований автомобильных и железных дорог, аэродромов, площадок различного назначения, фундаментов зданий и сооружений, буронабивных свай, ядер плотин, оснований свалок городского мусора и промышленных отходов, при тампонаже карстовых и других пустот и т.п

Изобретение относится к области строительства и может быть использовано при строительстве оснований автомобильных и железных дорог, аэродромов, площадок различного назначения, фундаментов зданий и сооружений, буронабивных свай, свалок городского мусора и промышленных отходов, тампонаже карстовых и других пустот, ядер плотин и т.п

Изобретение относится к материалам для укрепления грунта, а именно к вяжущим

Изобретение относится к области строительства и может быть использовано при строительстве оснований автомобильных и железных дорог, аэродромов, площадок различного назначения, фундаментов зданий и сооружений, свалок городского мусора и промышленных отходов, ядер плотин и т.п

Изобретение относится к области строительства и может быть использовано для стабилизации свойств лессовых и других просадочных грунтов за счет устранения просадочности при возможном увлажнении путем нагнетания в грунт растворов

Изобретение относится к области строительства и может быть использовано для определения несущей способности искусственных оснований (геотехногенных систем), выполненных путем инъекций в грунт закрепляющих растворов и химикатов
Изобретение относится к строительству, в частности, к закреплению грунтов оснований зданий и сооружений

Изобретение относится к строительству и может быть использовано при капитальном строительстве, устройстве дорожных оснований и покрытий, а также при рекультивации земельных участков нефтедобывающих районов
Изобретение относится к области строительства, в частности к способам укрепления грунтов при возведении дорожных оснований

Изобретение относится к дорожному строительству и может быть использовано при устройстве автомобильных дорог и аэродромов

Изобретение относится к области строительства, а именно к строительной технике, предназначенной для формования набивных свай, укрепления откосов и создания оснований под полы по грунту

Изобретение относится к строительству, а именно к закреплению грунтов оснований зданий и сооружений, получивших повреждения, например, в виде трещин, смещений, образовавшихся в процессе строительства или эксплуатации строений в результате неравномерных осадок оснований

Изобретение относится к вяжущим средствам для закрепления почв и песков и может быть использовано для их закрепления при строительстве и эксплуатации магистральных газопроводов и продуктопроводов, железных дорог, автомобильных дорог, откосов каналов, оснований опор линий электропередач и связи
Наверх