Способ определения характера насыщения коллекторов

 

Изобретение относится к области ядерной геофизики, а именно к группе геофизических методов, предназначенных для определения характера насыщения коллекторов в условиях осолоненных пластовых вод по нейтронным характеристикам природных сред, и может быть использовано в газонефтяной геологии. Способ заключается в облучении горных пород потоком быстрых нейтронов от ампульного источника и регистрации плотности потока тепловых нейтронов на двух и более расстояниях от источника излучения. Предварительно измеряют пространственно-временное распределение плотности потоков тепловых нейтронов на 10-15 пластах с известным составом скелета и пластового флюида (Р), по которым рассчитывают двухмерную эталонную номограмму N=f(R,P), где Р = Кнг+Кв, Кнг - коэффициент нефтегазонасыщенности, Кв - коэффициент водонасыщенности, N и R - соотношения рассеивающих и поглощающих параметров сред для регистрируемого пространственно-временного распределения плотности потока тепловых нейтронов, выраженные через макросечение поглощения (a) и макросечение рассеяния (s) тепловых нейтронов, времена замедления (s) и жизни () нейтронов, длины замедления (Ls) и диффузии (Ld). Выделяют на номограмме области преимущественно водо-, углеводородо- и водоуглеродного насыщения пластов. По измеренным распределениям плотности потоков тепловых нейтронов неизвестных пластов определяют соотношение рассеивающих и поглощающих нейтронных свойств исследуемых сред в виде тех же, что и для эталонных пластов, аналитических параметров N и R, и фиксируют их устройством вывода в качестве каротажных диаграмм. При сопоставлении диаграмм выделяют пласты для количественной обработки, предварительно оценивая их характер насыщения. По средним значениям аналитических параметров N и R для выбранных интервалов строят номограмму N=f(R,P) и, сравнивая полученную номограмму с эталонной, определяют характер насыщения неизвестных коллекторов. Техническим результатом изобретения является повышение точности идентификации газо- и нефтенасыщенных коллекторов и снижение финансовых затрат. 5 ил., 2 табл.

Изобретение относится к области прикладной ядерной геофизики, группе геофизических методов, предназначенных для определения характера насыщения коллекторов в условиях осолоненных пластовых вод по нейтронным характеристикам природных сред, и может быть использовано в газонефтяной геологии.

Известен способ определения характера насыщения коллекторов в условиях осолоненных пластовых вод, основанный на оценке времени жизни тепловых нейтронов под данным импульсного нейтронного каротажа (Импульсный нейтронный каротаж. "Скважинная ядерная геофизика". Справочник геофизика. Под ред. Кузнецова О.Л. и Поляченко А.Л. - М.: Недра, 1990, с. 50). В основе способа лежит зависимость времени жизни тепловых нейтронов () от наличия и содержания элементов, аномально поглощающих нейтроны (водород и хлор). Однако величина зависит также от состава скелета горных пород и его доли в исследуемом объеме среды. Поэтому способ позволяет определить тип заполняющего поры флюида при известной пористости коллектора или наличии опорного пласта, т. к. опирается только на один поглощающий ядерный параметр изучаемой среды. К недостатку способа можно отнести также его высокую стоимость и недостаточную технологичность, обусловленную низкой скоростью каротажных исследований.

Еще известен способ определения характера насыщения коллекторов в условиях минерализованных пластовых вод, состоящий в комплексированнии методов двухзондового нейтрон-нейтронного каротажа (2ННК-Т) и нейтронного гамма-каротажа (НГК). Способ реализуется при помощи измерения плотности потоков тепловых нейтронов (NМ3, NБ3) на двух расстояниях от источника нейтронов и интенсивности гамма-излучения радиационного захвата (Nn). По полученным данным строят графики зависимости Nn = f(Nnn= NБЗ/NМЗ), на которых углеводородосодержащие и водоносные пласты различаются по своему расположению на поле графика. Характер насыщения коллекторов идентифицируется исходя из следующих "в основном справедливых" соотношений: - для водоносных пластов Nn > Nnn, - для нефте- и газоносных Nn Nnn, основанных на том, что в случае присутствия хлора в исследуемой среде плотность потока нейтронов снижается за счет их интенсивного поглощения, а интенсивность гамма-излучения возрастает из-за дополнительного высокоэнергетического гамма-излучения от хлора с энергией 4-8 МэВ на общем фоне снижения скорости счета НГК в связи с уменьшением мощности объемного источника тепловых нейтронов. Повышение водородосодержания приводит к снижению всех измеряемых интенсивностей. Реакция (n, ) на водороде практической роли не играет, т. к. уровень дискриминации аппаратуры НГК превышает 2,2 МэВ (Филиппов Е.М. Ядерная разведка полезных ископаемых. Справочник. Киев. Наукова думка, 1978, с. 103).

К недостаткам способа следует отнести отсутствие учета разного влияния плотности горных пород на перенос нейтронного и гамма-излучения, которое приводит к существенным погрешностям при определении характера насыщения коллекторов. Так для газонефтяных коллекторов с низкой объемной плотностью возможен вариант Nn > Nnn, соответствующий водоносным пластам, а с высокой плотностью - Nn Nnn - как для углеводородосодержащих пластов. Далее, если данные двухзондового ННК-Т опираются на измерения, выполненные на различных расстояниях от источника излучения, и характеризуют изменение поля нейтронов в пространстве, то результаты НГК несут информацию лишь об одной конкретной точке поля и требуют введения дополнительных данных об опорном пласте, что также приводит к снижению достоверности определения характера насыщения коллекторов этим способом. Кроме того, отсутствие одновременных измерений методами 2ННК-Т и НГК снижает технологичность способа и приводит к возникновению дополнительных ошибок при увязке данных каротажа.

В качестве прототипа выбран наиболее близкий по сущности способ определения характера насыщения коллекторов в условиях минерализованных пластовых вод по двухзондовому нейтрон-нейтронному каротажу. Способ реализуется при помощи измерения плотности потоков тепловых нейтронов (NМ3, NБ3) на двух расстояниях от ампульного источника нейтронов. По результатам измерений определяют коэффициент пористости Кп = f(NБ3/NМ3), по теоретической или экспериментальной палеточной зависимости между величиной Кп и плотностью потока тепловых нейтронов на одном зонде, в которую в качестве параметра входит макросечение поглощения нейтронов (a), с помощью счетно-решающего устройства определяют a. Полученные данные позволяют оценить нефтенасыщенность горных пород при известных макросечениях поглощения скелета коллекторов, пластовой воды и нефти, определяемых по их химическому составу (Allen Linus S. NeutronNeutron logging for both porosity and macroscopic abscrption cross section. [Mobil Oil Corp.] Пат. США N 4021666, 1975).

К недостаткам способа следует отнести необходимое наличие информации о макросечении поглощения скелета горных пород, пластовой воды и нефти, которую в данном случае получают расчетным путем исходя из химического состава среды. Химический состав горных пород в скважинных условиях может быть определен по данным анализа керна или по результатам комплекса каротажных исследований. Первое включает весьма трудоемкие, дорогостоящие и длительные операции отбора керна, его подготовки к анализу и сам анализ. При этом возникают дополнительные проблемы с привязкой кернового материала к разрезу скважины, что может привести к существенным погрешностям в определении характера насыщения коллекторов. Второе - дает лишь общее представление о типе горных пород, которое не может быть использовано для расчетов, т.к. не учитывает естественные вариации состава природных сред и флюидов, либо требует включения в комплекс исследований дополнительных спектрометрических методов, например, таких как спектрометрический гамма-нейтронный и нейтронный активационный каротаж, характеризующиеся низкой производительностью и высокой стоимостью. Таким образом, оба пути получения данных о химическом составе изучаемых пород приводят к удорожанию и снижению технологичности способа, т. к. фактически способ представляет собой комплекс 2ННК-Т с геологическими или геофизическими методами. А погрешности в определении состава сред и увязке данных по глубине с измерениями 2ННК-Т являются причиной неустойчивости результатов способа.

Задача изобретения - повышение надежности и технологичности идентификации продуктивных газо- и нефтенасыщенных коллекторов.

Необходимый эффект определения характера насыщения коллекторов в условиях осолоненных пластовых вод по данным ННК-Т достигается благодаря тому, что при облучении горных пород потоком быстрых нейтронов от ампульного источника предварительно измеряют пространственно-временное распределение плотности потока тепловых нейтронов на 10-15 пластах с известным составом скелета и пластового флюида (P), по которым рассчитывают двухмерную эталонную номограмму N= f(R,P), где P = Kнг + Kв, Kнг - коэффициент нефтегазонасыщенности, Kв - коэффициент водонасыщенности, N и R - соотношения рассеивающих и поглощающих параметров сред для регистрируемого пространственно-временного распределения плотности потока тепловых нейтронов, выраженные через макросечение поглощения (a) и макросечение рассеяния (s) тепловых нейтронов, времена замедления (s) и жизни () нейтронов, длины замедления (Ls) и диффузии (Ld), как N = s/a и R = 1/(as), либо N = a/s и R = sa, либо N = a/s и R= LsLd, выделяют на ней области преимущественно водо-, углеводородо- и водоуглеводородного насыщения пластов, используя которые определяют характер насыщения неизвестных коллекторов, для чего по измеренным распределениям плотности потоков тепловых нейтронов неизвестных пластов определяют соотношение рассеивающих и поглощающих нейтронных свойств исследуемых сред в виде тех же, что и для эталонных пластов, аналитических параметров N и R, и фиксируют их устройством вывода в качестве каротажных диаграмм, при сопоставлении последних выделяют пласты для количественной обработки, предварительно оценивая их характер насыщения, по средним значениям аналитических параметров N и R для выбранных интервалов строят номограмму N= f(R, P) и, сравнивая полученную номограмму с эталонной, определяют характер насыщения неизвестных коллекторов.

Эталонную номограмму N=f(R, P) строят для любой пары аналитических параметров N = s/a и R = 1/(as), или N = a/s и R = sa, или N = a/s и R= LsLd. Выбор вида параметров N и R диктуется соображениями целесообразности исходя из возможностей применяемой аппаратуры.

В предлагаемом способе может использоваться также и номограмма, полученная на основании теоретических расчетов соотношения нейтронных параметров для известных сред, однако предпочтительнее применять экспериментальную эталонную номограмму, т.к. теоретическая зависимость N=f(R,P) позволяет лишь визуализировать основные принципы определения типа флюида, в то время как экспериментальная дает возможность дополнительно количественно оценивать продуктивность коллекторов, сравнивая N и R i-ого пласта с данными известных коллекторов.

Сущность предлагаемого способа идентификации водоносных и углеводородосодержащих коллекторов заключается в следующем: флюиды, заполняющие коллектора, представляют собой соединения водорода с углеродом (газ, нефть, битум) и с кислородом (вода). Известно, что нейтронные параметры кислорода и углерода чрезвычайно близки, следовательно, параметры пресной воды будут также мало отличаться от углеводородных, как и последние разниться между собой. Минерализованные пластовые воды содержат в составе соли NaCl такой аномальный поглотитель нейтронов, как хлор, присутствие которого в изучаемой среде резко изменяет ее нейтронно-поглощающие характеристики, нарушая баланс соотношения замедляющих и поглощающих нейтронных свойств пород тем больше, чем выше минерализация пластовых вод.

Соотношения замедляющих и поглощающих нейтронных параметров горных пород, таких как макросечение рассеяния (s) и поглощения (a), либо длины замедления (Ls) и диффузии (Ld), время замедления (s) и жизни () нейтронов, определяются по пространственно-временным распределениям тепловых нейтронов. Выбор типа нейтронных параметров для предлагаемой технологии не имеет принципиального значения, т.к. отношение значений макросечений s и a в совокупности с обратной величиной их произведения так же, как отношение a/s с произведением величин времени замедления и времени жизни тепловых нейтронов (s, a) или с произведением LsLd, в равной степени дают возможность разграничить обводненные и продуктивные коллектора различной пористости по положению точки с соответствующими значениями параметров пласта на поле одной из используемых номограмм (фиг. 1 - 3). Таким образом, использование аналитических параметров N = s/a и R = 1/(as), либо N = a/s и R = sa, либо N = a/s и R=LsLd диктуется соображениями необходимости и достаточности исходя из типа применяемой аппаратуры.

В таблицах 1 и 2 приведены нейтронные параметры и их соотношения для различных сред, рассчитанные для усредненных составов (по Кларку) по программе Nerpa-93 (Султанов А.М.), на основании которых построены фиг. 1 - 3. Для полученных номограмм характерно специфическое расположение точек с координатами N и R, соответствующее определенному типу среды. Так точки, отображающие параметры горных пород, не содержащих водород, располагаются в правом нижнем углу графика, водородосодержащие (нефть, пресная вода) - в левом верхнем углу. По мере увеличения концентрации водорода в среде точки располагаются в диагональной области по линии "безводородные породы - пресная вода, нефть" (от правого нижнего до левого верхнего угла) в зависимости от концентрации водорода. Так точка песчаника с 1,6% воды расположена ниже и левее точки глин (5% H2O). Газ, как правило, обладает существенно более низкой объемной плотностью по сравнению с водой и нефтью, что приводит к смещению точек, отображающих газоносные пласты в область, располагающуюся выше линии "безводородные породы - пресная вода". Наличие в горных породах хлора, входящего в состав минерализованных пластовых вод, предопределяют существенное увеличение поглощающих нейтронных свойств и тем большее, чем выше концентрация этого аномального поглотителя нейтронов. Следовательно, присутствие хлора приводит к нарушению баланса между рассеивающими и поглощающими нейтронными свойствами, что выражается в смещении точек, соответствующих хлорсодержащим пластам, с диагональной линии "безводородные породы - пресная вода, нефть" в область левого нижнего угла поля номограммы.

Таким образом, положение точки, соответствующей соотношению нейтронных параметров i-ой среды, на поле номограммы позволяет достаточно точно оценить характер насыщающего его флюида.

Руководствуясь рассмотренным выше принципом можно оценить тип флюида коллекторов непосредственно по характеру диаграмм аналитических параметров N и R, получаемых в процессе каротажа со счетно-решающего устройства (N = s/a и R = 1/(as), или N = a/s и R = sa, или N = a/s и R=LsLd). Так низкопористые породы отметятся над диаграмме параметра R максимумом, а параметра N - минимумом, высокопористые водородосодержащие коллектора будут характеризоваться минимальными значениями R и максимальными - N, минерализованные хлором породы при низких значениях R будут иметь тем более низкие величины N по сравнению с продуктивными интервалами, чем выше осолонение пласта.

Однако для повышения достоверности способа целесообразно выполнить количественную интерпретацию диаграмм аналитических параметров, заключающуюся в выделении отдельных, представляющих интерес пластов по разрезу скважины, определении средних величин N и R для них, построении по полученным данным номограммы N= f(R, P) и сравнении последней с эталонной номограммой. Это дает возможность наиболее точно определять характер насыщения коллекторов по исследуемой скважине в условиях минерализованных пластовых вод.

Для практической реализации способа требуется многозондовая (двух- и более зондовая) серийная аппаратура нейтрон-нейтронного каротажа. Наиболее предпочтителен многозондовый вариант аппаратуры, позволяющий более точно измерить распределение тепловых нейтронов, однако и двухзондовый ННК-Т позволяет получить достаточно достоверные результаты. Могут использоваться и последовательные многоразовые измерения однозондовым прибором с разными длинами зондов, однако они, как правило, дают значительную погрешность при увязке данных.

По предложенному способу работы выполняют в следующей последовательности: 1. Регистрируют распределения тепловых нейтронов в изучаемой среде, облучая ее потоком быстрых нейтронов от ампульного источника.

2. По распределению нейтронов определяют соотношения рассеивающих и поглощающих нейтронных параметров горных пород N и R (N = s/a и R = 1/(as), либо N = a/s и R = sa, либо N = a/s и R=LsLd).

3. По диаграммам аналитических параметров N и R предварительно оценивают характер насыщения коллекторов и выделяют интервалы для последующей попластовой обработки.

4. Определяют средние величины параметров N и R для выделенных пластов и строят двухмерную номограмму N=f(R,P).

5. Используя эталонную номограмму N=f(R,P), априорно установленную по измерениям пространственно-временных распределений плотности потоков тепловых нейтронов на 10-15 пластах с известным составом скелета горных пород и заполняющего его флюида или опираясь на принципы определения характера насыщения, по теоретически полученной аналогичной номограмме определяют тип флюида, заполняющего поры коллектора.

Представленные на фиг. 1 - 3 теоретические зависимости аналитических параметров N = s/a и R = 1/(as) (фиг. 1), N = a/s и R = sa (фиг. 2), N = a/s и R=LsLd (фиг. 3) имеют одинаковый вид, что не противоречит известным закономерностям переноса нейтронного излучения. Располагая такими номограммами, по положению точки в поле рисунка легко расшифровать реальную зависимость N= f(R), полученную по исследуемой скважине, и определить характер насыщения i-ого интервала.

На фиг. 4 показаны диаграммы аналитических параметров N и R по участку скважины 3003 Оренбургской площади, полученные со счетно-решающего устройства при измерении пространственно-временного распределения тепловых нейтронов с серийной аппаратурой СРК-29 (зонды 50,8 и 25,8 см). В качестве источника излучения использовался Pu-Be мощностью 107 н/с, детекторов - счетчики нейтронов СНМ-56.

На фиг. 5 приведен пример применения предложенного способа определения характера насыщения коллекторов по номограмме N=f(R,P), построенной по результатам попластовой обработки диаграмм N и R для скважины 3003 (Оренбург). Исходя из принципов, рассмотренных выше на примере теоретических зависимостей (фиг. 1 - 3), обводненные и углеводородосодержащие коллектора на нем, достаточно хорошо идентифицируются, выделяясь в отдельные области.

В таблице 1 представлены нейтронные параметры некоторых горных пород и сред, по которым составлена таблица 2.

В таблице 2 - значения натуральных логарифмов для соотношения рассеивающих и замедляющих параметров некоторых горных пород и сред, использованные для построения теоретических номограмм N=f(R,P) (фиг. 1 - 3).

Достижение положительного эффекта при осуществлении предложенного способа подтверждается результатами его применения при определении характера насыщения коллекторов по 10 нефтяным и газовым скважинам карбонатного и терригенного разрезов и иллюстрируется (фиг. 4) диаграммами аналитических параметров N и R, полученных со счетно-решающего устройства для участка скважины 3003 (Оренбург), и номограмме N=f(R,P) (фиг. 5), построенной по результатам попластовой обработки для всего исследуемого интервала скважины. По диаграммам хорошо выделяются высокопористые коллектора в интервале 1488 - 1656 м (номера пластов с 7 по 22) и ниже 1712 м (пласты 28 - 32), низкопористые - 1668 - 1712 м (пласты 24 - 27) и плотные породы 1460 - 1486 м (пласты 5 - 6) и 1656 - 1668 м (пласт 23). Однако на основании качественного анализа диаграмм сложно выделить обводненные интервалы, в то время как это просто сделать, используя номограмму N= f(R, P) (фиг. 5) для отдельных пластов и опираясь на принципы определения характера насыщения коллекторов, выраженные на теоретических номограммах известных сред. Пласты 30 - 32 (ниже 1741 м) - водонасыщены.

Ожидаемый от использования предложенного способа экономический эффект превышает эффект от широко применяемого в настоящее время способа-аналога, основанного на эксплуатации генераторов нейтронов, т.к. в отличие от весьма дорогостоящего аналога предлагаемый способ экономичен, прост и дает возможность определить характер насыщения коллекторов в условиях осолоненных пластовых вод при любой пористости без использования опорных пластов.

Формула изобретения

Способ определения характера насыщения коллекторов в условиях осолоненных пластовых вод, заключающийся в облучении горных пород потоком быстрых нейтронов от ампульного источника, регистрации плотности потока тепловых нейтронов на двух и более расстояниях от источника излучения, отличающийся тем, что перед исследованием неизвестных пластов проводят дополнительные измерения распределения плотности потоков тепловых нейтронов на 10 - 15 пластах с известным составом скелета и пластового флюида (P), по которым рассчитывают двухмерную эталонную номограмму N=f(R,P), где P = Кнг + Кв, Кнг - коэффициент нефтегазонасыщенности, Кв - коэффициент водонасыщенности, N и R - соотношения рассеивающих и поглощающих параметров сред для регистрируемого пространственно-временного распределения плотности потока тепловых нейтронов, выраженные через макросечение поглощения (a) и макросечение рассеяния (s) тепловых нейтронов, времена замедления (s) и жизни () нейтронов, длины замедления (Ls) и диффузии (Ld), как N = s/a и R = 1/(as), либо N = a/s и R = as, N = a/s и R = Ls Ld, выделяют на ней области преимущественно водо-, углеводородо- и водоуглеродного насыщения пластов, используя которые определяют характер насыщения неизвестных коллекторов, для чего по измеренным распределениям плотности потоков тепловых нейтронов неизвестных пластов, определяют соотношение рассеивающих и поглощающих нейтронных свойств исследуемых сред в виде тех же, что и для эталонных пластов, аналитических параметров N и R, и фиксируют их устройством вывода в качестве каротажных диаграмм, при сопоставлении последних выделяют пласты для количественной обработки, предварительно оценивая их характер насыщения, по средним значениям аналитических параметров N и R для выбранных интервалов строят номограмму N = f(R,P) и, сравнивая полученную номограмму с эталонной, определяют характер насыщения неизвестных коллекторов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к области промысловой геофизики, в частности к методам нейтрон-нейтронного и гидродинамического каротажа коллекторов нефти и газа, осложненных зонами проникновения промывочной жидкости

Изобретение относится к области геофизических исследований скважин с применением источников нейтронного излучения и может быть использовано в геологии, нефтяной и газовой промышленности для бескернового изучения геологических разрезов буровых скважин, в том числе выявления пластов с минерализованным флюидом и соленосных пластов (KCl, NaCl и т.д.)

Изобретение относится к прикладной ядерной геофизике и может быть использовано для дистанционных исследований труднодоступных объектов радиоактивными и ядерно-геофизическими методами в геологии, горной промышленности, химическом производстве и других областях народного хозяйства

Изобретение относится к прикладной ядерной геофизике и может быть использовано для исследования скважин при поисках, разведке и эксплуатации нефтегазовых, рудных и угольных месторождений

Изобретение относится к дистанционным методам бескернового изучения элементного состава геологических сред, а более конкретно к группе методов, основанных на использовании эффекта активации ядер стабильных изотопов быстрыми или тепловыми нейтронами, и может быть использовано в геологии, геофизике, угольной промышленности и других областях народного хозяйства

Изобретение относится к геофизике, а именно к методам нейтронного и гидродинамического каротажа коллекторов нефти и газа, осложненных зонами проникновения промывочной жидкости

Изобретение относится к области методов изучения нефтеносных коллекторов, а более конкретно к группе методов, основанных на применении различного вида ядерных излучений и может быть использовано для обнаружения интервалов скопления углеводородов при разводке и эксплуатации нефтяных и газовых месторождений

Изобретение относится к области промысловой геофизики, а более конкретно к группе ядерно-геофизических методов исследования природных сред, и может быть использовано для геологических разрезов рудных, угольных, нефтяных, газовых и др
Изобретение относится к области ядерной геофизики и может быть использовано при геологической разведке алмазоносных месторождений для обнаружения алмазной породы (алмазов) в стенке (пристенном пространстве) разведочной скважины

Изобретение относится к измерению пористости образования

Изобретение относится к области прикладной ядерной геофизики, а более конкретно к группе геофизических методов, предназначенных для количественной оценки содержания радиационно-активных элементов в естественном залегании, и может быть использовано в рудной и газонефтяной геологии и геофизике, горной промышленности и других областях

Изобретение относится к области устройств для создания пучков меченых нейтронов, а именно, отпаянных нейтронных генераторов и может быть использовано в системах оперативного неразрушающего дистанционного анализа сложных химических веществ и в ядерно-физических установках, где требуется регистрация высокоинтенсивных потоков заряженных частиц

Изобретение относится к области разработки приборов для геофизических исследований скважин, в частности скважинных генераторов нейтронов

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом

Изобретение относится к области ядерно-геофизических исследований скважин импульсными нейтронными методами и может быть использовано в геологии, геофизике, атомной промышленности и в других отраслях народного хозяйства

Изобретение относится к проведению томографии в нефтяных и газовых скважинах
Наверх