Способ неинвазивного определения длины базилярной пластинки внутреннего уха человека

 

Способ может быть использован в медицине, а именно в оториноларингологии. У пациента устанавливают воспринимаемую базилярной пластинкой максимальную верхнюю пороговую частоту (fm) звука и максимальную частоту (fmo) воспринимаемого звука стандартной базилярной пластинкой, имеющей длину Lo = 32 мм, и по соотношению L = Lo 221g (fm/fmo), где L - длина базилярной пластинки пациента, Lo - длина стандартной базилярной пластинки, равная 32 мм, fm - максимальная частота звука, воспринимаемая базилярной пластинкой пациента, fmo - максимальная частота звука, воспринимаемая стандартной базилярной пластинкой, определяют длину базилярной пластинки внутреннего уха человека или длину базилярной пластинки внутреннего уха человека определяют по аудиометрической верхней пороговой границе слуха графически. Способ неинвазивен. 1 з.п. ф-лы, 1 ил.

Изобретение относится к медицинской технике и практике, в частности к оториноларингологии, конкретно к аудиометрическим методам исследования слуха.

Известно, что для слуха разных людей свойствен неодинаковый порог восприятия верхних частот (высоких тонов) звука. Отмечается [1] как снижение его величины, особенно с возвратом, так и способность отдельных индивидуумов воспринимать звуки, по частоте превышающие 20 кГц, - ультразвуки. Причины таких отклонений в вариабельности восприятия звука к настоящему времени не нашли объяснений и механизмы такого феномена не раскрыты. Можно предположить объяснение этого феномена различием в длине базилярной пластинки внутреннего уха для разных людей. Поэтому определение этого параметра становится важной диагностической и лечебной задачей.

В оториноларингологической практике неинвазивный способ решения этой проблемы не представлен.

В качестве аналога способа неинвазивного определения длины базилярной пластинки внутреннего уха человека рассматривается метод аудиометрии (в расширенном диапазоне) как метод исследования спектральной характеристики уха на пороге чувствительности [2].

Целью данного изобретения является построение с использованием аудиометрических исследований слуха способа неинвазивного определения длины базилярной пластинки внутреннего уха человека.

Сущность изобретения заключается в следующем: Анализ [2], где выявляются процессы, реализующие механизмы и биофизическую (волновую) модель слуха, позволяет установить соотношения распределения скорости звука в перилимфатической камере и координат базилярной пластинки как функций воспринимаемой ухом частоты звуковой волны: V(f) и l(f), - и выявить связь длины L базилярной пластинки с воспринимаемой ею максимальной (верхней пороговой) частотой fm звука в сравнении с длиной L0 = 32 мм стандартной базилярной пластинки, воспринимающей максимальную частоту fm0 = 20 кГц, в виде соотношения L = L022lg(fm/fm0), (1) которое может служить математической формой представления частотной биофизической модели базилярной пластинки внутреннего уха человека.

Это соотношение (1) позволяет, определив на основании аудиометрических исследований максимальную частоту fm воспринимаемого конкретным пациентом звука, рассчитать длину L базилярной пластинки его внутреннего уха.

На фиг. 1 представлены выполненные в системе MarhCAD [3] результаты расчета длины L = L(fm) базилярной пластинки как функции максимальной воспринимаемой частота звука fm в соответствии с формулой (1).

В блоке a) заданы начальные данные: значения длины стандартной базилярной пластинки L0 = 32 мм и пороговой частоты для стандартного fm0 = 20 кГц.

В блоке b) указан цикл расчета длины исследуемой базилярной пластинки как функции пороговой частоты fm в интервале от 20 до 50000 Гц, приведено расчетное соотношение (1), являющееся математической формой представления частотной биофизической модели базилярной пластинки внутреннего уха, показаны результаты анатилического расчета для некоторых конкретных частот fm = 10, 20, 30 кГц, которым соответствуют длины L = 21, 32, 41 мм.

В блоке c) решение этой модели представлено в графической форме. При этом определяется не только сама величина L(fm), но и устанавливается характер ее изменения с изменением fm. Кроме того, устанавливается метод графического определения длин для базилярных пластинок разных индивидуумов, для которых указаны отмеченные значения частот fm.

Анализ соотношения (1) показывает, что между максимальной частотой fm воспринимаемого ухом звука и длиной L базилярной пластинки устанавливается однозначное соответствие. Этот факт раскрывает особенности функционирования базилярной пластинки внутреннего уха, объясняя природу неодинаковой восприимчивости отдельными людьми звуковых сигналов разных пороговых частот (тонов) различием в длинах их базилярных пластинок.

В клинической практике соотношение (1) может быть использовано для диагностических и лечебных целей при определении длины базилярной пластинки внутреннего уха по определенной аудиометрически верхней пороговой границе слуха.

Литуратура 1. Альтман А.Я. //БСЭ. - Т. 23. - С. 592 - 593.

2. И.Б.Солдатов. Лекции по оториноларингологии - М.: Медицина. - 1990. - С. 26 - 34.

3. Дьяконов В.П. Система MathCAD. - М.: Радио и связь. - 1993.

Формула изобретения

1. Способ неинвазивного определения длины базилярной пластинки внутреннего уха человека, включающий анализ биофизических процессов, реализующих механизм и биофизическую (волновую) модель слуха, отличающийся тем, что устанавливают воспринимаемую базилярной пластинкой максимальную верхнюю пороговую частоту fm звука и максимальную частоту fmo воспринимаемого звука стандартной базилярной пластинкой, имеющей длину L0 = 32 мм, и по соотношению L = L0 221g(fm/fmo), где L - длина базилярной пластинки пациента; L0 - длина стандартной базилярной пластинки, равная 32 мм; fm - максимальная частота звука, воспринимаемая базилярной пластинкой пациента;
fmo - максимальная частота звука, воспринимаемая стандартной базилярной пластинкой,
определяют длину базилярной пластинки внутреннего уха человека.

2. Способ по п.1, отличающийся тем, что длину базилярной пластинки внутреннего уха человека определяют по аудиометрической верхней пороговой границе слуха графически.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к медицине, точнее к оториноларингологии и сурдологии, и может найти применение при обследовании и лечении тугоухих и глухих

Изобретение относится к медицине, точнее к оториноларингологии, и может найти применение при определении состояния слуха пациентов, подборе слуховых аппаратов и профотборе

Изобретение относится к медицинской технике и практике, в частности, к оториноларингологии, конкретно к моделированию процессов, происходящих в периферическом отделе слухового анализатора

Изобретение относится к медицинской практике и используется для объективного исследования слуха пациентов

Изобретение относится к медицине, а именно к оториноларингологии

Изобретение относится к медицине, в частности - оториноларингологии и отоневрологии, и предназначено для топической диагностики поражений слухового анализатора
Изобретение относится к медицине, в частности к неврологии и психофизиологии, и может быть использовано как способ исследования пространственного слуха для исследования межполушарной сенсорной (слуховой) асимметрии, для ранней и экспресс-диагностики односторонних центральных и периферических поражений слухового анализатора, для оценки функционально-адаптивных возможностей слуховой и вестибулярной систем, а также при отборе на профессии, связанные с акустическими и вестибулярными нагрузками (космос, авиация, морфлот и т.д.)

Изобретение относится к медицине (психофизиологии) и может быть использовано для активации психических способностей человека за счет дифференцированной цветостимуляции в полуполя каждого глаза
Изобретение относится к медицине, рефлексодиагностике
Изобретение относится к медицине, рефлексодиагностике

Изобретение относится к медицине и медицинской технике, а именно к устройствам анализа электрофизиологических сигналов, в частности электрокардиосигнала, и экспресс-диагностики на основе этого анализа онкологических заболеваний и заболеваний внутренних органов человека
Изобретение относится к области медицины, а именно к медицине катастроф и анестезиологии - реаниматологии, и может быть использовано для прогнозирования выживаемости пораженных в периоде изоляции в условиях чрезвычайных ситуаций и определения объема оказания медицинской помощи этим пораженным на месте травмы и на этапах эвакуации
Изобретение относится к судебной медицине и может быть использовано для определения первоначального положения трупа, а также возможного его перемещения
Изобретение относится к медицине, в частности к гастроэнтерологии
Изобретение относится к медицине, в частности к гастроэнтерологии

Изобретение относится к области диагностики в медицине и предусматривает инструментальную диагностику перикраниальных и шейных мышечных расстройств при головной боли (ГБ), например при головной боли напряжения (ГБН)
Наверх