Способ обеспечения качества воды автоматической регулировкой минимально необходимой дозы озона

 

Способ относится к автоматизации процессов очистки воды методом озонирования и включает автоматическую регулировку минимально необходимой дозы озона в зависимости от уровня окислительно-восстановительного потенциала воды. Дополнительно регулируют производительность озонатора изменением выходной мощности источника питания озонатора в зависимости от уровня окислительно-восстановительного потенциала воды. Проточная система для осуществления данного способа содержит трубопровод подачи очищаемой воды. Трубопровод подсоединен к водяному входу эжектора. Выход эжектора соединен с трубопроводом подачи очищенной воды потребителю, в котором установлена измерительная ячейка. Электрический выход измерительной ячейки подключен ко входу устройства обратной связи, выход которого подключен ко входу регулируемого источника питания. Выход последнего подключен ко входу питания озонатора. Газовый выход озонатора через газопровод подсоединен к газовому входу эжектора. Данный способ дает возможность экономии энергоресурсов и повышения экологической безопасности и санитарной надежности данных процессов. 3 ил.

Изобретение относится к способам автоматизации процессов очистки воды методом озонирования. Оно позволяет обеспечить минимально необходимую дозу озона (количество озона, приходящееся на единицу объема очищенной воды), что экономит энергоресурсы, повышает экологическую безопасность и санитарную надежность данного процесса и может быть использовано в очистных станциях и установках, использующих в качестве окислителя озон.

Известен способ регулирования процесса озонирования сточных вод, реализуемый в устройстве, содержащем анализатор содержания окисляемых соединений, регулятор соотношения концентрации ингредиентов, датчики исходной и остаточной концентрации озона, операционный блок и реактор озонирования воды с дроссельной задвижкой, изменяющей давление озоно-воздушной смеси в нем (SU 1460044 A1, 23.02.1989).

Недостатками известного являются недостаточная техническая и санитарная надежность процесса очистки воды, низкая экологическая безопасность, а также высокая сложность осуществления способа.

Наиболее близким к заявленному решению по технической сущности является способ обеспечения качества воды, в котором автоматически регулируют минимально необходимую дозу озона в зависимости от уровня окислительно-восстановительного потенциала воды (RU 2051128 C1, 27.12.1995). Данный способ обладает недостаточной санитарной надежностью процесса очистки воды и имеет низкую экологическую безопасность.

Технический результат, достигаемый при реализации данного изобретения заключается в повышении экологической безопасности и санитарной надежности технологических процессов очистки воды, а также в экономии энергоресурсов.

Указанный технический результат достигается тем, что в способе обеспечения качества воды путем автоматической регулировки минимально необходимой дозы озона в зависимости от уровня окислительно-восстановительного потенциала воды, согласно изобретению дополнительно регулируют производительность озонатора изменением выходной мощности источника питания озонатора в зависимости от уровня окислительно-восстановительного потенциала воды.

На фиг. 1 приведена функциональная схема проточной системы для осуществления предлагаемого способа. Регулируемый источник питания для работы по предлагаемому способу может быть выполнен по схеме, приведенной на фиг. 2. Функциональная схема устройства обратной связи, необходимого для обеспечения работы системы по предлагаемому способу, представлена на фиг. 3.

Проточная система для осуществления способа содержит трубопровод Тр.1 подачи очищаемой воды, присоединенный к водяному входу эжектора Э. Выход эжектора подсоединен к трубопроводу Тр.2 подачи очищенной воды потребителю, в который установлена измерительная ячейка ИЯ. Электрический выход измерительной ячейки подключен к входу устройства обратной связи ОС, выход которого подключен ко входу регулируемого источника питания РИП, выход которого подключен ко входу питания озонатора ОЗ. Выход озонатора через газопровод Гпр. подсоединен к газовому входу эжектора. Рабочий газ для озонатора поступает от газозаборника ГЗ.

Регулируемый источник питания содержит генератор 1, управляемый напряжением, буферный усилитель 2, тиристорный инвертор 3 и высоковольтный трансформатор 4.

Устройство обратной связи содержит устройство сравнения 5, фильтр нижних частот 6, буферный усилитель 7, источник опорного напряжения 8.

Способ осуществляется следующим способом. Подлежащая очистке вода подается в систему очистки по трубопроводу Тр.1 и поступает в эжектор Э, где происходит ее озонирование поступающим по газопроводу Гпр. озоном. Далее проозонированная вода по трубопроводу Тр.2 поступает на вход измерительной ячейки ИЯ и далее к потребителю. Измерительная ячейка вырабатывает электрический сигнал, пропорциональный окислительно-восстановительному потенциалу проходящей через нее воды, который характеризует качество очистки. При недостаточной степени очистки воды, вырабатываемое ИЯ напряжение, поступающее на устройство обратной связи (ОС), мало, что заставляет устройство обратной связи вырабатывать сигнал управления в сторону увеличения выходной мощности регулируемого источника питания РИП, от которого осуществляется питание озонатора и, следовательно, увеличить производительность озонатора по озону. С ростом производительности озонатора увеличивается степень очистки воды и, следовательно, вырабатываемое ИЯ напряжение. При достижении нужной степени очистки воды устройство ОС зафиксирует выходную мощность РИП, при которой будет вырабатываться необходимое для оптимальной очистки воды количество озона. Если под воздействием дестабилизирующих факторов (например, снизилось загрязнение поступающей на очистку воды) количество вырабатываемого озона будет избыточно, то ИЯ будет вырабатывать повышенное напряжение и устройство ОС снизит выходную мощность РИП и, следовательно, производительность озонатора.

Регулировка мощности в данном источнике питания осуществляется изменением частоты выходного напряжения, что в свою очередь приводит к изменению производительности озонатора.

Устройство сравнения сопоставляет поступающее на вход от измерительной ячейки напряжение, пропорциональное окислительно-восстановительному потенциалу очищенной воды, с напряжением источника опорного напряжения и формирует сигнал ошибки. Этот сигнал проходит через фильтр нижних частот, предназначенный для обеспечения устойчивости при работе системы, и через буферный усилитель поступает на выход устройства обратной связи.

Формула изобретения

Способ обеспечения качества воды путем автоматической регулировки минимально необходимой дозы озона в зависимости от уровня окислительно-восстановительного потенциала воды, отличающийся тем, что дополнительно регулируют производительность озонатора изменением выходной мощности источника питания озонатора в зависимости от уровня окислительно-восстановительного потенциала воды.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано при производстве электрохимических элементов с индикатором состояния заряда

Изобретение относится к устройствам для анализа газа с помощью электрохимических ячеек на твердом электролите и может быть использовано для контроля и регулирования процессов сжигания топлива

Изобретение относится к области электрохимии, электрохимических процессов и технологий в части измерения потенциала электродов под током, а именно к способу измерения потенциала рабочего электрода электрохимической ячейки под током, основанному на прерывании электрического тока, пропускаемого между рабочим и вспомогательным электродами, и измерении текущего потенциала рабочего электрода, при этом процесс измерения текущего потенциала Eизм рабочего электрода производят относительно электрода сравнения непрерывно по времени t, затем по измеренным значениям потенциала рассчитывают первую производную от зависимости изменения текущего потенциала рабочего электрода от времени: (t)=Eизм

Изобретение относится к электрохимическим устройствам и касается твердых электролитов с проводимостью одновременно по двум щелочным катионам

Изобретение относится к контролю качества эфиров азотной кислоты по показателю кислотности, а именно к способу контроля кислотности нитроэфиров путем измерения электрических параметров гальванического элемента с использованием в нем в качестве электролита нитроэфира, при этом измеряют величину тока необратимого коррозионного элемента при минимально возможном сопротивлении внешней среды

Изобретение относится к области амперометрического измерения, а именно к амперометрическому сигнализатору концентрации свободного остаточного хлора в питьевой воде, содержащему измерительный блок и гидравлический блок, включающий входной усилитель с термокомпенсатором, потенциостат, поддерживающий на катоде уровень потенциала восстановления свободного хлора, проточную амперометрическую ячейку и гидравлическую систему, поддерживающую постоянную скорость потока анализируемой воды в ней, ячейка содержит катод - электрод из благородного металла, электрод сравнения - ионоселективный мембранный электрод и анод, при этом анод выполнен в виде корпуса проточной амперометрической ячейки из нержавеющей стали со штуцерами входа и выхода воды, которые установлены со смещением относительно вертикальной оси анода, соединенного электрической цепью с одним выходом потенциостата, другой выход которого подключен к электроду сравнения

Изобретение относится к области потенциометрического измерения щелочности в анализируемом растворе, а именно к измерителю общей щелочности в растворе, содержащему потенциометрическую ячейку с анализируемым раствором, измерительный электрод для определения pH и вспомогательный электрод, при этом ячейка выполнена проточной и содержит ионоселективный электрод для определения pCO3, измеритель снабжен блоком измерения pH, блоком измерения pCO3, аналого-цифровым преобразователем, вычислителем концентрации гидроксильных ионов OH-, вычислителем концентрации карбонатных ионов CO23-, вычислителем концентрации бикарбонатных ионов HCO-3, сумматором-вычислителем общей щелочности и цифроаналоговым преобразователем, причем ячейка соединена с блоком измерения pH и блоком измерения pCO3, которые соединены с аналого-цифровым преобразователем, соединенным с вычислителем концентрации гидроксильных ионов OH- и вычислителем концентрации карбонатных ионов CO23-, соединенным, в свою очередь, с вычислителем концентрации бикарбонатных ионов HCO-3, вычислитель концентрации гидроксильных ионов OH-, вычислитель концентрации карбонатных ионов CO23- и вычислитель концентрации бикарбонатных ионов HCO-3 соединены с сумматором-вычислителем общей щелочности, который соединен с цифроаналоговым преобразователем

Изобретение относится к устройствам для электрохимического анализа газовых сред и может быть использовано для определения концентрации серусодержащих газов, не являющихся (H2S, Sv) и являющихся (SO2) соединениями серы с кислородом, например, в экологических целях для анализа отходящих газов некоторых химических производств, теплоэлектростанций, в атомной, медицинской и пищевой промышленности, для анализа светлых и темных нефтепродуктов

Изобретение относится к области измерения содержания кислорода в выхлопных газах двигателя внутреннего сгорания автомобиля

Изобретение относится к охране окружающей среды, к коммунальному хозяйству, а именно к способам очистки сточных вод полигонов твердых бытовых отходов (ТБО) и может быть использовано преимущественно в теплый период времени (весна-лето-осень) при температуре воздуха не ниже 0o

Изобретение относится к области водоснабжения, в частности к очистке природных вод, содержащих растворенные железоорганические соединения, и может применяться в системах водоподготовки для целей водоснабжения

Изобретение относится к очистке промышленных сточных вод от ионов тяжелых металлов, нефтепродуктов, СПАВ, сульфатов, нитратов, хлоридов и может быть использовано в электротехнической, приборостроительной, машиностроительной и других отраслях промышленности

Изобретение относится к способам очистки сточных вод и может быть использовано в химической и металлургической отраслях промышленности при очистке сточных вод от ионов меди, никеля, кобальта, ртути

Изобретение относится к способам очистки сточных вод и может быть использовано в химической и металлургической отраслях промышленности при очистке сточных вод от ионов меди, никеля, кобальта, ртути

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электростанциях и котельных установках

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях и котельных установках

Изобретение относится к химической очистке воды и может быть использовано для приготовления питьевой воды и воды в плавательных бассейнах
Наверх