Твердый электролит для электрохимических устройств

 

Изобретение относится к электрохимическим устройствам и касается твердых электролитов с проводимостью одновременно по двум щелочным катионам. В электролит, содержащий оксид трехвалентного элемента M2O3 (M = Al, Fe, Ga), оксид четырехвалентного элемента ЭО2 (Э = Si, Ti, Ge) и оксид рубидия, дополнительно вводят оксид калия или оксид цезия при следующем соотношении (мол. %): M2O3 - 30-40; ЭO2 - 10-25; Rb2o - 4,5-42,5; K2O (или Cs2O) - 4,5-42,5. 1 табл.

Изобретение относится к электрохимическим устройствам и касается твердых электролитов с проводимостью одновременно по двум щелочным катионам (так называемая со-катионная проводимость). Такие твердые электролиты могут использоваться в качестве диафрагм при электролизе расплавов смесей солей. Со-катионные твердые электролиты могут применяться также для электрохимической очистки расплавленного натрия, который используется в качестве теплоносителя в охлаждающих контурах на атомных электростанциях, от примесей калия, рубидия и цезия.

Известен со-катионный твердый электролит, являющийся силикатным стеклом, содержащим щелочные катионы двух типов, состава (I-x)A2OxA2O2SiO2(A,A'=Li, Na, K) (Isard J.O.//J.Non-Cryst. Solids. 1969. V. 1. P. 235). Эти стекла имеют высокое удельное электросопротивление (104 107 Омсм при 300oC, 105 1010 Омсм при 150oC, что ограничивает их практическое применение.

Известен также со-катионный твердый электролит семейства -глинозема, имеющий состав 1,2 (I-x)K2Ox A2OIIFe2O3 (A=Na, Rb, Cs, Tl) (см. например, S. Nariki и др.// J.Electrochem. Soc. 1989. V. 136. P. 2093). Такой твердый электролит имеет удельное электросопротивление 10 300 Омсм при 300oC и 5 100 Омсм при 400oC, однако имеющиеся в литературе данные об его электрических свойствах относятся к монокристаллам и не могут служить основанием для проектирования электрохимический устройств с использованием такого электролита, поскольку b-глинозем и его аналоги обладают двумерной проводимостью, и при переходе от монокристаллов к поликристаллическим образцам удельное электросопротивление возрастает в десятки и сотни раз.

Наиболее близким к изобретению является твердый электролит, содержащий оксид трехвалентного элемента, оксид четырехвалентного элемента и оксид рубидия (авт. св. N 1653433, кл. G 01 N27/416, Бурмакин Е.И. Смольников В.В. Шехтман Г.Ш.), имеющий высокую проводимость по катионам рубидия. Недостаток этого электролита заключается в том, что он не может применяться в качестве диафрагмы для разделения анодного и катодного пространств при электролизе расплавов смесей солей рубидия и калия или цезия, а также смесей щелочных металлов, поскольку в результате ионного обмена будут изменяться электросопротивление диафрагмы, а также состав анолита и католита.

Задачей изобретения является расширение областей применения твердых электролитов со щелочно-катионной проводимостью. Изобретение направлено на создание поликристаллического твердого электролита, имеющего высокую проводимость одновременно по двум щелочным катионам. Это достигается тем, что в известный твердый электролит, содержащий оксид трехвалентного элемента M2O3 (M= Al, Fe, Ga), оксид четырехвалентного элемента ЭO2 (Э=Si, Ti, Ge) и оксид рубидия, дополнительно вводят оксид калия или оксид цезия при следующем соотношении компонентов (мол.): M2O3 30-40; ЭO2 10-25; Rb2O 4,5-42,5; K2O (или Cs2O) 4,5-42,5.

Предлагаемый электролит получают спеканием смесей M2O3, ЭO2, Rb2CO3 и K2CO3 (или Cs2CO3) либо других солей щелочных металлов, которые при нагревании разлагаются с образованием оксидов. Полученный керамический материал имеет высокую со-катионную проводимость, причем число переноса каждого из щелочных катионов можно целенаправленно изменять, меняя их соотношение в твердом электролите. Электронная составляющая проводимости предлагаемого материала не превышает долей процента общей электропроводности. Результаты испытаний предлагаемых твердых электролитов приведены в таблице.

При содержании любого из щелочных оксидов менее 4,5 или более 42,5 мол. проводимость приобретает практически монокатионный характер, т.е. ток переносится одним из щелочных катионов.

Формула изобретения

Твердый электролит для электрохимических устройств, содержащий оксид трехвалентного элемента, оксид четырехвалентного элемента и оксид рубидия, отличающийся тем, что твердый электролит дополнительно содержит оксид калия или церия при следующем соотношении компонентов, мол.

M2O3 30 40 ЭО2 10 25 Rb2O 4,5 42,5 K2O или Cs2O 4,5 42,5 где M Al, Fe, Ga;
Э Si, Ti, Ge.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к контролю качества эфиров азотной кислоты по показателю кислотности, а именно к способу контроля кислотности нитроэфиров путем измерения электрических параметров гальванического элемента с использованием в нем в качестве электролита нитроэфира, при этом измеряют величину тока необратимого коррозионного элемента при минимально возможном сопротивлении внешней среды

Изобретение относится к области амперометрического измерения, а именно к амперометрическому сигнализатору концентрации свободного остаточного хлора в питьевой воде, содержащему измерительный блок и гидравлический блок, включающий входной усилитель с термокомпенсатором, потенциостат, поддерживающий на катоде уровень потенциала восстановления свободного хлора, проточную амперометрическую ячейку и гидравлическую систему, поддерживающую постоянную скорость потока анализируемой воды в ней, ячейка содержит катод - электрод из благородного металла, электрод сравнения - ионоселективный мембранный электрод и анод, при этом анод выполнен в виде корпуса проточной амперометрической ячейки из нержавеющей стали со штуцерами входа и выхода воды, которые установлены со смещением относительно вертикальной оси анода, соединенного электрической цепью с одним выходом потенциостата, другой выход которого подключен к электроду сравнения

Изобретение относится к области потенциометрического измерения щелочности в анализируемом растворе, а именно к измерителю общей щелочности в растворе, содержащему потенциометрическую ячейку с анализируемым раствором, измерительный электрод для определения pH и вспомогательный электрод, при этом ячейка выполнена проточной и содержит ионоселективный электрод для определения pCO3, измеритель снабжен блоком измерения pH, блоком измерения pCO3, аналого-цифровым преобразователем, вычислителем концентрации гидроксильных ионов OH-, вычислителем концентрации карбонатных ионов CO23-, вычислителем концентрации бикарбонатных ионов HCO-3, сумматором-вычислителем общей щелочности и цифроаналоговым преобразователем, причем ячейка соединена с блоком измерения pH и блоком измерения pCO3, которые соединены с аналого-цифровым преобразователем, соединенным с вычислителем концентрации гидроксильных ионов OH- и вычислителем концентрации карбонатных ионов CO23-, соединенным, в свою очередь, с вычислителем концентрации бикарбонатных ионов HCO-3, вычислитель концентрации гидроксильных ионов OH-, вычислитель концентрации карбонатных ионов CO23- и вычислитель концентрации бикарбонатных ионов HCO-3 соединены с сумматором-вычислителем общей щелочности, который соединен с цифроаналоговым преобразователем

Изобретение относится к устройствам для электрохимического анализа газовых сред и может быть использовано для определения концентрации серусодержащих газов, не являющихся (H2S, Sv) и являющихся (SO2) соединениями серы с кислородом, например, в экологических целях для анализа отходящих газов некоторых химических производств, теплоэлектростанций, в атомной, медицинской и пищевой промышленности, для анализа светлых и темных нефтепродуктов

Изобретение относится к области измерения содержания кислорода в выхлопных газах двигателя внутреннего сгорания автомобиля

Изобретение относится к области измерения содержания кислорода в выхлопных газах двигателей внутреннего сгорания автомобиля

Изобретение относится к аналитической химии и может быть использовано для быстрого оперативного контроля в химических производствах, в сельском хозяйстве, в медицине, в пищевой промышленности и при решении задач экологии, где требуется быстрое количественное или полуколичественное тестирование микроконцентраций веществ

Изобретение относится к области анализа материалов, а именно к определению кислорода в жидкой меди

Изобретение относится к способам анализа технологических растворов, получаемых при химической переработке в процессе получения целлюлозно-бумажной продукции и может быть использовано при анализе сточных вод целлюлозно-бумажной промышленности

Изобретение относится к области электрохимии, электрохимических процессов и технологий в части измерения потенциала электродов под током, а именно к способу измерения потенциала рабочего электрода электрохимической ячейки под током, основанному на прерывании электрического тока, пропускаемого между рабочим и вспомогательным электродами, и измерении текущего потенциала рабочего электрода, при этом процесс измерения текущего потенциала Eизм рабочего электрода производят относительно электрода сравнения непрерывно по времени t, затем по измеренным значениям потенциала рассчитывают первую производную от зависимости изменения текущего потенциала рабочего электрода от времени: (t)=Eизм

Изобретение относится к устройствам для анализа газа с помощью электрохимических ячеек на твердом электролите и может быть использовано для контроля и регулирования процессов сжигания топлива

Изобретение относится к области электротехники и может быть использовано при производстве электрохимических элементов с индикатором состояния заряда

Изобретение относится к измерительной технике, к измерению концентрации ионов водорода (pH)

Изобретение относится к электрохимическим способам исследования материалов

Изобретение относится к погружному датчику для контроля за ячейками электролиза алюминия с использованием электрода

Изобретение относится к области аналитического приборостроения и может найти применение при контроле паров вредных веществ, в частности аммиака в воздухе
Наверх