Способ измерения напряженности электромагнитного поля

 

Способ измерения напряженности электромагнитного поля заключается в помещении в измеряемое электромагнитное поле К антенн-датчиков и регистрации напряжений на элементе нагрузки К антенн-датчиков U1....UK, пропорциональных напряженности воздействующего электромагнитного поля, все К антенны-датчики имеют отличительные друг от друга амплитудно-частотные характеристики, число антенн-датчиков К равняется числу источников излучения N или превышает его, К N, напряженности всех N составляющих электромагнитного поля E1....EN определяют из решения системы линейных уравнений. Технический результат в увеличении точности измерений, определении напряженности всех составляющих поля. 1 ил., 1 табл.

Изобретение относится к области измерения, а именно к разделу "измерение напряженности магнитного поля" (класс G 01 R 29/08), и может быть использовано для измерения интенсивности электромагнитных полей радиочастот в экологии, для определения безопасности персонала и решения других аналогичных задач.

Известные методы измерения электромагнитных полей радиочастот основаны в помещении антенны-датчика в измеряемое поле и регистрации напряжения, наводимого измеряемым полем в нагрузке приемной антенны-датчика, с последующим расчетом напряженности поля при помощи известных зависимостей, связывающих значение напряженности поля и параметров датчика и нагрузки (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 163, или Адольф И. Шваб "Электромагнитная совместимость", М. 1998 г., с. 254). Указанный способ используется при измерениях на относительно низких радиочастотах, в диапазоне сверхвысоких частот используется аналогичный способ, отличающийся тем, что регистрируется мощность, выделяющаяся в нагрузке приемной антенны-датчика при помещении антенны-датчика в измеряемое поле, а при пересчете измеренной величины используются зависимости, связывающие величину выделившейся мощности с параметрами антенн-датчиков и плотностью потока мощности измеряемого поля (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 164).

Указанные способы измерения реализованы с использованием различных вариантов выполнения антенн-датчиков (см. Патент СССР A1 1649478 за 1991 г.) в измерительных приборах, предназначенных для измерения уровня электромагнитных полей в целях определения уровней, опасных для жизнедеятельности, например в отечественных приборах типа: ПЗ-16...ПЗ-21, а также в последней модификации Поле-3, суть которых заключается в измерении с выхода антенн-датчиков, предназначенных для работы в своем диапазоне частот, напряжения, пропорционального напряженности поля. При этом коэффициенты пропорциональности для каждой антенны-датчика в своем диапазоне известны.

Известны также способы частотно-селективных измерений, в которых электрические колебания, принятые приемной антенной-датчиком и содержащие колебания различных частот, фильтруют при помощи полосовых фильтров, усиливают, детектируют, измеряют и регистрируют величину выходного напряжения (см. книгу А.Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 174).

Способ частотно-селективных измерений применяется преимущественно для измерения относительно слабых полей. Способы реализованы в различных измерительных приемниках, селективных микровольтметрах, представляющих собой сложные и дорогостоящие устройства.

Прототипом изобретения является способ измерения напряженности поля путем помещения в измеряемое поле антенны-датчика и регистрации напряжения, пропорционального измеряемой напряженности, в нагрузке антенн-датчиков (см. книгу А. Н. Зайцева "Измерение на СВЧ и их метрологическое обеспечение", М. 1989 г., с. 163).

Способ состоит в помещении антенны-датчика в измеряемое поле, регистрации напряжения, создаваемого измеряемым полем в нагрузке приемной антенны, и определении напряженности электрического поля согласно известной зависимости, связывающей значение измеряемой напряженности поля с электрическими параметрами антенны-датчика и нагрузки.

Указанная зависимость имеет вид где U - напряжение на выходе антенны-датчика, В; E - напряженность электрического поля, В/М; hg(f) - эквивалентная высота антенны-датчика, М; Zн(f) - сопротивление нагрузки антенны-датчика, Ом; Zа(f) - эквивалентное сопротивление антенны-датчика, Ом; К(f) - значение амплитудно-частотной характеристики по частоте, М.

Недостатком прототипа являются невозможность точного определения напряженности поля, создаваемого источником на определенной частоте f1, за счет помех от источников, излучающих на других частотах fi, где i = 2...N, а также невозможность определения напряженностей электромагнитного поля, создаваемых этими источниками помех. Напряжение, наводимое в нагрузке антенн-датчиков при воздействии на него N источников излучения с частотами fi, будет определяться выражением где U - напряжение на выходе антенны-датчика, В;
K(fi) - значение амплитудно-частотной характеристики на частоте излучения i-го источника (fi), М;
Ei - напряженность электрического поля на частоте излучения i-го источника (fi), В/М;
fi - частоты излучения i-го источника, Гц;
N - число источников излучения в измеряемом поле.

Таким образом, в реальных условиях вследствие конечной восприимчивости антенной-датчиком излучения с частотами, не входящими в частотный диапазон применяемой антенны-датчика, измерение истинного значения напряженностей поля становится невозможным.

Решаемой технической задачей изобретения является увеличение точности измерений напряженности электромагнитного поля, а также определение напряженности всех составляющих поля.

Решаемая техническая задача в способе измерения напряженности электромагнитного поля, заключающемся в помещении измерительной антенны-датчика в измеряемое поле и регистрации напряжения, наводимого измеряемым электромагнитным полем на элементе нагрузки приемной антенны-датчика, достигается тем, что проводят дополнительные измерения путем последовательного помещения в измеряемое электромагнитное поле К-1 антенн-датчиков и регистрации напряжений U1...UК на элементе нагрузки антенн-датчиков, пропорциональных напряженности воздействующего электромагнитного поля. Все K антенны-датчики имеют отличительные друг от друга амплитудно-частотные характеристики. Число антенн-датчиков K равняется числу источников излучения N или превышает его (KN). Напряженности всех N составляющих электромагнитного поля E1...EN определяются из решения системы линейных уравнений (3):

где EN - напряженность электрического поля на частоте излучения N-го источника (fN), В/М;
KK(fN) - значение амплитудно-частотной характеристики K-той антенны-датчика на частоте излучения N-го источника (fN), М;
fN - частоты излучения N-го источника, Гц;
UK - напряжение на выходе K-той антенны-датчика, В;
EКизм - напряженность поля, полученная при измерении K-той антенной-датчиком, В/М.

Схематически реализация этого способа показана на чертеже. Устройство состоит из К антенн-датчиков 11...1К, которые последовательно подключаются к элементу нагрузки 2, и микровольтметра 3, регистрирующего напряжение на элементе нагрузки 2.

Суть измерений согласно заявляемому способу состоит в следующем. Имеются К антенн-датчиков 11. ..1К (где K N), каждая из которых предназначена для работы в своем определенном диапазоне, и измерительное устройство 3. Для измерения напряженности поля, возбуждаемого N источниками с известными частотами fN, помещают антенну-датчик, предназначенный для измерения в диапазоне действия первого источника, в измеряемое поле, и с помощью микровольтметра 3 регистрируется значение напряжения на элементе нагрузки 2 антенны-датчика 11:

где U1 - напряжение на выходе первого антенны-датчика, В;
K1(fi) - значение амплитудно-частотной характеристики для первой антенны-датчика на частоте излучения i-го источника (fi), М;
Ei - напряженность электрического поля на частоте излучения i-го источника (fi), В/М;
fi - частоты излучения i-го источника, Гц;
N - число источников излучения в измеряемом поле.

Далее последовательно помещают К-1 антенн-датчиков 12...1К, напряжения на выходе которых представляются в виде

где j = 2...K;
Uj - напряжение на выходе j-ой антенны-датчика, В;
Kj(fi) - значение амплитудно-частотной характеристики для j-той антенны-датчика на частоте излучения i-го источника (fi), М;
Ei - напряженность электрического поля на частоте излучения i-го источника (fi), В/М;
fi - частоты излучения i-го источника, Гц;
K - число антенн-датчиков;
N - число источников излучения в измеряемом поле.

Коэффициенты Ki(fi) определяются заранее путем калибровки антенн-датчиков. Таким образом, получаем систему линейных уравнений с N неизвестными. Решением уравнения (6) находятся неизвестные величины напряженности электромагнитного поля E1...EN:

где EN - напряженность электрического поля на частоте излучения N-го источника (fN), В/М;
KK(fN) - значение амплитудно-частотной характеристики K-той антенны-датчика на частоте излучения N-го источника (fN), M;
fN - частоты излучения N-ro источника, Гц;
UK - напряжение на выходе K-той антенны-датчика, В;
EКизм - напряженность поля, полученная при измерении K-той антенной-датчиком, В/М.

Пример реализации:
Для реализации предложенного способа измерений может быть использован серийный измеритель напряженности электромагнитного поля - прибор "ПОЛЕ-3", имеющий три антенны-датчика. Первый датчик АП-Е-1, с известными поправочными коэффициентами, предназначен для измерения в диапазоне метровых волн. Второй датчик АП-ППЭ-1 - для измерений в дециметровом диапазоне, также с известными значениями амплитудно- частотной характеристики.

Измерение напряженности поля в метровом диапазоне при наличии составляющих в дециметровом диапазоне волн осуществляется следующим образом:
- проводится измерение напряжения на элементе нагрузки антенны-датчика АП-Е-1. Результат измерения имеет вид

где U1 - напряжение на выходе первой антенны-датчика (АП-Е-1), В;
K1(fi) - значение амплитудно-частотной характеристики для первой антенны-датчика на частоте излучения i-го источника (fi), М;
Ei - напряженность электрического поля на частоте излучения i-го источника (fi), В/М;
fi - частоты излучения i-го источника, Гц;
- проводится аналогичным образом измерение при помощи антенны-датчика АП-ППЭ-1. Результат измерения напряжения на элементе нагрузки антенны-датчика (АП-ППЭ-1) представится в виде

где U2 - напряжение на выходе второй антенны-датчика (АП-ППЭ-1), В;
K2(fi) - значение амплитудно-частотной характеристики для первой антенны-датчика на частоте излучения i-го источника (fi), М;
Ei - напряженность электрического поля на частоте излучения i-го источника (fi), В/М;
fi - частоты излучения i-го источника, Гц.

При этом значение амплитудно-частотной характеристики K1(f1) и K2(f2) известны из паспортных данных самого прибора. Значения амплитудно-частотной характеристики K1(f2) и K2(f1) определяются предварительно путем калибровки указанных антенн-датчиков. Таким образом, значения амплитудно-частотной характеристики K1(f1), K2(f2), K1(f2) и K2(f1) являются известными величинами. Результат измерений, значения E1 и E2, находятся из решения системы линейных уравнений

где E1 и E2 - напряженности электрического поля на частотах излучения первого и второго источников (f1 и f2), В/М;
K1(f1) и K1(f2) - значения амплитудно-частотных характеристик для первой антенны-датчика на частотах излучения f1 и f2, М;
K2(f1) и K2(f2) - значения амплитудно-частотных характеристик для второй антенны-датчика на частотах излучения f1 и f2, М;
f1 и f2 - частоты излучения первого и второго источников, Гц;
U1 и U2 - напряжения на выходе первой и второй антенн-датчиков, В;
E1изм E2изм - напряженности электрического поля, полученные посредством измерения первой и второй антеннами-датчиками при одновременной работе первого и второго источников, В/М.

Проведена проверка работоспособности способа измерений, в ходе которой определялись относительные значения погрешностей, возникающих при измерении известным методом и предложенным методом для различных соотношениях интенсивностей. Результаты вычислений сведены в таблицу. Значения амплитудно-частотных характеристик K1(f1), K2(f2), K1(f2) и K2(f1) в таблице даны в децибелах (dB). E1H и E2H - это значения напряженности электромагнитного поля, создаваемого в точке измерения отдельно первым и вторым источниками соответственно. E1 и E2 - это полученные из решения системы (9) значения напряженности электромагнитного поля на частотах f1 и f2 соответственно.

Относительная погрешность, возникающая при измерении E существующим методом (%), определяется из соотношения

где E - относительная погрешность, возникающая при измерении существующим методом, %;
E1изм - напряженность электрического поля, полученная посредством измерения первой антенной-датчиком при одновременной работе первого и второго источников, В/М;
E1H - значение напряженности электромагнитного поля, создаваемого в точке измерения первым источником, В/М.

Относительная погрешность, возникающая при измерении Eус предложенным методом (%), определяется из соотношения

где Eус - относительная погрешность, возникающая при измерении предложенным методом, %;
E1H - значение напряженности электромагнитного поля, создаваемого в точке измерения первым источником, В/М;
E1 - восстановленное значение напряженности электромагнитного поля на частоте f1, В/М.


Формула изобретения

Способ измерения напряженности электромагнитного поля, заключающийся в помещении измерительной антенны-датчика в измеряемое поле и регистрации напряжения, наводимого измеряемым электромагнитным полем на элементе нагрузки приемной антенны-датчика, отличающийся тем, что проводят дополнительные измерения путем последовательного помещения в измеряемое электромагнитное поле К - 1 антенн-датчиков, и регистрации напряжений на элементе нагрузки K антенн-датчиков U1 ... UK, пропорциональных напряженности воздействующего электромагнитного поля, все K антенны-датчики имеют отличительные друг от друга амплитудно-частотные характеристики, число антенн-датчиков K равняется числу источников излучения N, или превышает его K N, напряженности всех N, составляющих электромагнитного поля E1 ... EN, определяют из решения системы линейных уравнений:

где EN - напряженность электрического поля на частоте излучения N-го источника (fN), B/M;
KK(fN) - значение амплитудно-частотной характеристики K-й антенны-датчика на частоте излучения N-го источника (fN), M;
fN - частоты излучения N-го источника, Гц;
UK - напряжение на выходе K-го антенны-датчика, В;
EKизм - напряженность поля, полученная при измерении K-й антенной-датчиком, B/M.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области контроля защитных параметров специальной одежды, предохраняющей людей, профессионально связанных с интенсивными электромагнитными полями, от СВЧ переоблучения

Изобретение относится к области радиотехнических устройств для определения уровня или наличия электромагнитного излучения и может быть использовано для обнаружения излучения, превышающего допустимую норму и представляющую опасность для здоровья человека, например, при применении мощных передатчиков УКВ диапазона, используемых для защиты помещения от несанкционированной записи на магнитофон или для защиты охраняемого объекта от всевозможных радиоуправляемых приборов, кроме того, устройство может быть использовано для определения работоспособности трубки сотового телефона по наличию высокочастотного излучения на ее антенне, для определения возможного несанкционированного включения трубки сотового телефона путем активирования ее от базы или аппаратуры, замещающей аппаратуру базы сотовой системы связи

Изобретение относится к области радиоизмерений, точнее к измерению переменных электромагнитных полей, и предназначено для использования в измерителях напряженности электрической составляющей переменного электромагнитного поля, не требующих периодической калибровки от внешнего источника стандартного электромагнитного поля

Изобретение относится к области переноса амплитудно-модулированных сигналов и демодуляции, а именно к магнитооптическим амплитудным регистраторам

Изобретение относится к средствам предотвращения несанкционированного контроля работы оборудования, а также деятельности и перемещений персонала и отдельных личностей, например, скрытыми видеокамерами

Изобретение относится к измерительной технике, в частности к устройствам контроля напряженности электрических полей, и может быть использовано для индивидуального учета уровня воздействия электрического поля на организм человека

Изобретение относится к технике измерения параметров полей и сред, а именно к устройствам регистрации физических полей, и может быть использовано в самых разнообразных областях науки, техники и народного хозяйства, в т.ч

Изобретение относится к технике измерения параметров полей и сред, а именно к устройствам регистрации физических полей, и может быть использовано в самых разнообразных областях науки, техники и народного хозяйства, в т.ч

Изобретение относится к технике радиоизмерений и может быть использовано для оперативной оценки экспериментальным путем степени безопасности малогабаритных радиоэлектронных средств (РЭС) - портативных радиостанций, бесшнуровых и сотовых радиотелефонов и т.д

Изобретение относится к области геофизики и космической физики и может быть использовано для измерения электрических полей в ионосфере Земли с помощью научной аппаратуры, установленной на борту космического аппарата (КА)

Изобретение относится к геофизике горного дела и может быть использовано при электроразведочных работах и исследованиях электромагнитных полей, излучаемых горными породами при их разрушении, а также в горной промышленности для прогноза динамических проявлений в массиве горных пород при изменении его напряженно-деформированного состояния

Изобретение относится к области геофизики и космической физики и может быть использовано для измерения электрических полей в ионосфере Земли с помощью научной аппаратуры, установленной на борту космического аппарата (КА)

Изобретение относится к радиотехнике и может быть использовано в системах радиоконтроля для измерения напряженности электромагнитного поля (ЭМП) радиосигналов

Изобретение относится к пассивной радиолокации и может быть использован для измерения мощности радиотеплового излучения в широком диапазоне высоких частот

Изобретение относится к технике радиоизмерений и может быть использовано при определении уровней электромагнитного излучения (ЭМИ), создаваемого радиоэлектронными средствами электронно-вычислительной техники (ЭВМ) различного назначения в полосе частот, включающей промышленную частоту 50 Гц

Изобретение относится к технике радиоизмерения и может быть использовано для измерения интенсивности электромагнитного излучения от высокочастотных установок и антенн при оценке степени биологической опасности электромагнитного излучения
Наверх