Способ изготовления кварцевых резонаторов бт-среза

 

Изобретение относится к пьезоэлектронике и может быть использовано для изготовления высокочастотных резонаторов и монолитных фильтров. Способ изготовления кварцевых резонаторов БТ-среза, включающий распиловку кристалла кварца на плоские заготовки, механическую шлифовку заготовок, формирование кристаллических элементов преимущественно в форме обратной мезаструктуры глубоким химическим травлением, нанесение электродов и монтаж, плоскую заготовку при распиловке кристалла кварца ориентируют под углом 0o00' 30' к оси X и -49o 30' к оси Z, формируют кристаллический элемент с шероховатостью поверхности не более 5 10-8 м химическим травлением и осуществляют инверсию структуры кристаллического элемента к углу -49o 30' к оси Z путем термической обработки при температуре ---фазового перехода (846 К). Техническим результатом является расширение области использования технологии изготовления БТ-резонаторов до ВЧ- и СВЧ-диапазона в серийном производстве с одновременным упрощением технологии. 3 ил., 1 табл.

Изобретение относится к пьезозлектронике и может быть использовано для изготовления высокочастотных резонаторов и монолитных фильтров.

Известны способы изготовления кварцевых резонаторов и монолитных фильтров БТ-среза, включающие распиловку кристалла кварца на плоские заготовки с ориентацией под углом 0o00'30' к оси X и -49o30' к оси Z, механическую шлифовку или полировку заготовок, нанесение электродов и монтаж пьезоэлементов в держатель [1]. Способы позволяют изготавливать резонаторы с хорошей добротностью до частоты 50 МГц, при толщине кристаллического элемента (КЭ) 50 мкм. Серийное производство БТ-резонаторов на более высокие частоты не производительно из-за ограниченных возможностей механической обработки тонких КЭ.

Известны способы изготовления кварцевых резонаторов АТ-среза [2], включающие распиловку кварца на плоские заготовки с ориентацией +35o30' к оси Z, механическую шлифовку, формирование КЭ в форме обратной мезаструктуры химическим травлением, нанесение электродов и монтаж в держатель. Такие способы используются в серийном производстве высокочастотных резонаторов до 100 МГц и для экспериментальных изделий на частоты 400 МГц и более. При этом химическим полирующим травлением получают кварцевые мембраны с толщиной в рабочей области 4-17 мкм. Резонаторы БТ-среза с высокой добротностью на указанные частоты таким способом получить не удается - отсутствуют подходящие методы и растворы химического полирования мембран БТ-кварца.

Ближайшим аналогом является способ получения акустического устройства на основе искусственно сдвойникованных пластин кварца [3, 4]. Способ включает распиловку кварца на плоские заготовки с ориентацией +35o15' к оси Z, механическую обработку КЭ, нанесение пленок Cr, NiCr или Ni на участки КЭ, прилежащие к электродной области, термическую инверсию кристаллической структуры кварца к углу -35o15' на участках под пленками при 550-560oC, нанесение электродов и монтаж.

Способ позволяет изготовить резонаторы АТ-среза с улучшенной температурно-частотной характеристикой. Однако, он не пригоден для производства резонаторов БТ-среза с частотами выше 50 МГц, т.к. не обеспечивает высокого качества обработки рабочих поверхностей КЭ и полную контролируемую инверсию кварцевой пластины. Кроме того, технология изготовления усложняется операциями нанесения и снятия металлизации для проведения термической инверсии.

Задачей предлагаемого технического решения является расширение области использования технологии изготовления БТ-резонаторов до высокочастотного и сверхвысокочастотного диапазона в серийном производстве с одновременным упрощением технологии.

Поставленная задача решается тем, что в способе изготовления кварцевых резонаторов БТ-среза, включающем распиловку кристалла кварца на плоские заготовки, механическую шлифовку заготовок, формирование кристаллических элементов преимущественно в форме обратной мезаструктуры глубоким химическим травлением, нанесение электродов и монтаж, плоскую заготовку при распиловке кристалла кварца ориентируют под углом 0o00'30' к оси X и +49o30' к оси Z, формируют КЭ с шероховатостью поверхности не более 5 10-8 м химическим травлением и осуществляют инверсию структуры КЭ к углу -49o30' к оси Z путем термической обработки при температуре --- фазового перехода (846 К).

На фиг. 1 показана гистограмма инверсии тонких пластин со срезом +49o от температуры.

На фиг. 2 представлена зависимость шероховатости поверхности Rz кварцевых пластин от глубины травления.

На фиг. 3 показана ТЧХ резонатора 60,56 МГц с кристаллическим элементом, полученным инверсией к углу -49o.

Последовательность операций изготовления кварцевых резонаторов БТ-среза по предлагаемому способу следующая.

Вначале осуществляют распиловку кристалла кварца на плоские заготовки с ориентацией под углом 0o00'30' к оси X и +49o30' к оси Z. Затем шлифуют поверхности плоских заготовок, заканчивая механическую обработку на корунде М5, и проводят тщательную очистку полученных КЭ ультразвуковым методом, химической промывкой и вакуумным отжигом. Если КЭ на конечном этапе требуется придать форму обратной мезаструктуры, то дополнительно по периферии КЭ наносят защитное покрытие любым известным способом.

После механической обработки и очистки кристаллические элементы подвергают химическому травлению до необходимой толщины, например, в полирующих растворах плавиковой кислоты (HF), бифторида аммония (NH4FHF), изоамилового спирта, диметилформамида, обеспечивая при этом шероховатость рабочих поверхностей не более 5 10-8 м. Затем КЭ помещают в муфельную печь и проводят термическую обработку при температуре ---фазового перехода кварца, осуществляя при этом инверсию кристаллической структуры к углу -49o30' относительно оси Z, что соответствует срезу БТ.

Далее на КЭ наносят электроды и полученные пьезоэлементы монтируют в держатели, например, для корпусов "ММ".

Возможность осуществления изобретения показана на этапах отработки технологических операций при изготовлении БТ-резонаторов на частоту до 70 МГц. Опыты по глубокому химическому травлению проводились с кварцевыми пластинами срезов +49o и -49o к оси Z. Диаметр пластин 5 мм, а начальная толщина от 50 до 80 мкм. Травление осуществлялось на промышленной установке ЦЛ 1080-4421 при температуре растворов (353 0,5)К. Пластинам, помещенным в кассеты, задавалось реверсивное круговое движение в горизонтальной плоскости и возвратно-поступательное движение в вертикальной плоскости с частотой 24 качания в минуту. В ряде случаев для формирования КЭ с обратной мезаструктурой травление проводилось с использованием масок Y-Cu, напыленных с двух сторон пластины магнетронным способом.

Опыты по инверсии структуры кварца проводились на пластинах со срезом +49o к оси Z толщиной 30, 40 и 70 мкм, а также на пластинах АТ-среза размерами: 17х17 мм и толщиной 0,4 мм, диаметром 10 мм и толщиной 0,2 мм, диаметром 5 мм и толщинами 20, 40 и 60 мкм.

Полная инверсия кварца АТ-среза к углу -35o после химической обработки поверхности пластин в полирующих растворах обнаружена авторами при нагреве пластин с указанными размерами до 960oC при скорости нагрева 3 град/мин и последующем охлаждении до комнатной температуры. Пластины были изготовлены из кристалла искусственного электроочищенного кварца марки СКО. В дальнейшем аналогичные опыты по инверсии структуры кварца проведены с пластинами различных срезов +41o, +49o, +53o (ЖТ-срез) - при температурах 560, 570, 600, 650, 800 и 960oC. Результаты однозначны. Типичная гистограмма для пластин со срезом +49o показана на фиг. 1. В каждом случае обработке при указанных температурах в течение 1 ч подвергались не менее 10 пластин. Точность установления температуры в муфельной печи 10 градусов, поэтому инверсия наблюдается не у всех пластин при 560 и 570oC (10 и 30% соответственно). Кроме того, градиент температуры по объему печи может достигать 20 градусов. Поскольку кварц имеет различную величину внутреннего напряжения и примесность, которые влияют на температуру инверсии его структуры, то целесообразно технологическую температуру установить через обобщенный параметр - температуру фазового перехода. Для искусственного электроочищенного кварца это, как правило, 846 К.

Аномальные изменения кристаллической структуры в пластинах кварца, обнаруженные в наших опытах при фазовых превращениях, можно объяснить, согласно с автором [5], "сверхпластичностью" кристаллической решетки, пронизанной дефектами в результате механических напряжений на различных этапах обработки.

На фиг. 2 представлены данные по химической полировке кварцевых пластин БТ-среза (-49o к оси Z), а также пластин, ориентированных под углом +49o к оси Z. График 1 соответствует травлению в растворе 45% HF и бифторида аммония со скоростью 0,6 мкм/мин. Верхний график 2 получен с добавкой равных частей изоамилового спирта и диметилформамида в указанный раствор при скорости травления 0,21 мкм/мин. Следует заметить, что подобный уровень шероховатости Rz=0,l мкм получен для БТ-среза в работе [6]. Однако, полировка на таком уровне недостаточна для изготовления резонаторов на частоту выше 50 МГц по основной моде. Динамическое сопротивление резонаторов при этом 60-100 Ом. Кроме того, на рабочих поверхностях кристаллических элементов присутствуют каналы травления глубиной 1 - 10 мкм, что резко сокращает выход годных резонаторов.

Химическая полировка среза +49o (нижний график 2) значительно выигрывает, т. к. Rz 0,05 мкм при скорости травления 1,05 мкм/мин. На поверхности кристаллических элементов отсутствуют каналы травления. Уместно упомянуть, что инверсия кристаллической структуры кварца к углу -49o при ---фазовом переходе происходит без видимого нарушения поверхностной текстуры пластин. Перестройка решетки идет на атомарном уровне при изменении линейных размеров в пределах 1 На основе технического решения, разработанного в настоящей заявке, изготовлены экспериментальные резонаторы БТ-среза. В таблице указаны основные параметры этих резонаторов, а также параметры резонаторов АТ-среза, изготовленные по аналоговой технологии [2]: f - основная частота, МГц; Rq - динамическое сопротивление, Ом; Uн - уровень нелинейных искажений, Дб; Rz - шероховатость поверхности кристаллических элементов, измеренная по средней линии; - угол ориентации кристаллического элемента к оси Z.

Анализ данных таблицы и графиков на фиг. 2 позволяет выбрать граничное значение шероховатости поверхности КЭ, до которого следует проводить химическое полирующее травление в предлагаемом способе. В данном случае это величина Rz 0,05, при которой уровень нелинейных искажений БТ-резонаторов больше 50 Дб с выходом 90%. Rq таких резонаторов выше, чем для аналоговых резонаторов АТ-среза при сравнимых частотах. Тем не менее, добротность резонаторов БТ-среза на частоту 65 МГц в 1,5-2 раза выше, чем у резонаторов АТ-среза.

Кристаллические элементы резонаторов АТ-среза и среза -35o15' изготовлены в форме обратной мезаструктуры. Срез -35o15' не имеет технического применения в производстве изделий пьезотехники и выбран в качестве экспериментального подтверждения полной инверсии химически полированных КЭ с положительной ориентацией при ---фазовом переходе.

Резонаторы, указанные в таблице, имеют серебряное электродное покрытие с подслоем нихрома. ТЧХ резонаторов с инверсией к углу -49o (см. фиг. 3) имеет вид, типичный для классических резонаторов БТ-среза.

Таким образом, введение в техпроцесс операций химического полирования кварцевых пластин со срезом +49o30' до Rz 0,05 мкм и термической инверсии их структуры к углу -49o30' позволяет создать технологию для серийного производства высокочастотных резонаторов БТ-среза.

Формула изобретения

Способ изготовления кварцевых резонаторов БТ-среза, включающий распиловку кристалла кварца на плоские заготовки, механическую шлифовку заготовок, формирование кристаллических элементов преимущественно в форме обратной мезаструктуры глубоким химическим травлением, нанесение электродов и монтаж, отличающийся тем, что плоскую заготовку при распиловке кристалла кварца ориентируют под углом 0o00' 30' к оси X и + 49o 30' к оси Z, формируют кристаллический элемент с шероховатостью поверхности не более 5 x 10-8 м глубоким химическим травлением и осуществляют инверсию структуры кристаллического элемента к углу -49o 30' к оси Z путем термической обработки при температуре -- фазового перехода, равной 846 К, после чего осуществляют нанесение электродов и монтаж.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к пьезотехнике и может быть использовано для изготовления кристаллических элементов с выпуклым профилем, близким к линзообразному, для резонаторов и монолитных фильтров
Изобретение относится к электронной технике и может быть использовано в производстве монолитных пьезоэлектрических фильтров и резонаторов
Изобретение относится к пьезотехнике и может быть использовано на предварительных этапах обработки кварцевых пластин при изготовлении высокочастотных кварцевых резонаторов и монолитных фильтров

Изобретение относится к микроэлектронике и может быть использовано для изготовления тонких кристаллических элементов (КЭ) высокочастотных пьезоэлектрических приборов, например, кварцевых резонаторов и монолитных фильтров
Изобретение относится к технологии изготовления многослойных изделий, обеспечивающих передачу акустической энергии с минимальными потерями на границах различных материалов

Изобретение относится к области пьезоэлектроники, а именно к производству пьезоэлектрических фильтров

Изобретение относится к технике изготовления пьезоэлектрических резонаторов путем покрытия кристаллических пластин вакуумным испарением металлов при управлении и регулировании их осаждением

Изобретение относится к электронной технике, в частности к вакуумной технологии и может быть использовано при изготовлении пьезоэлектрических пластин ионным травлением Способ изготовления пьезоэлектрических пластин включает установку пьезоэлектрических пластин на вращающуюся вокруг своей оси мишень, на которой установлены вращающиеся вокруг своих осей подложкодержатепи

Изобретение относится к радиоэлектронике
Изобретение относится к области пьезотехники и может быть использовано при изготовлении высокочастотных кварцевых резонаторов и монолитных кварцевых фильтров

Изобретение относится к электротехнике, к технологии изготовления пьезоэлектрических резонаторов и может быть использовано при изготовлении микрорезонаторов крутильных колебаний, применяющихся в различных радиоэлектронных устройствах и бытовой электронике
Изобретение относится к пьезотехнике и может быть использовано для изготовления высокочастотных кварцевых резонаторов

Изобретение относится к области электротехники, в частности к пьезотехнике, и может быть использовано для изготовления кристаллических элементов (КЭ) высокочастотных резонаторов, включая и прецизионные

Изобретение относится к области радиотехники, в частности к пьезотехнике, и может быть использовано при разработке кварцевых резонаторов, используемых в высокостабильных кварцевых генераторах, применяемых в связной аппаратуре и навигационной аппаратуре

Изобретение относится к пьезотехнике и может использоваться в производстве фильтровых и генераторных резонаторов из кварца и сильных пьезоэлектриков
Наверх