Осветительный прибор

 

Изобретение относится к приборостроению, в частности к осветительным приборам. Техническим результатом является разработка осветительного прибора с использованием полупроводникового термоэлектрического генератора для выработки электрической энергии без внешнего источника тепловой энергии. Технический результат достигается путем использования в качестве осветительного прибора лампы накаливания, запитываемой термоэлектрической батареей, на первом спае которой расположена емкость с испаряющейся жидкостью, а на втором спае - металлический радиатор, представляющий собой плоскую пластину с плафоном в виде усеченного конуса, причем лампа накаливания помещена в пространство, ограниченное плафоном, и посредством электрических проводов подключена к термоэлектрической батарее. Осветительный прибор крепится на подставке. Налитая в емкость жидкость в процессе своего испарения понижает температуру первого спая термоэлектрической батареи. Возникающая при этом разность температур между спаями термоэлектрической батареи вызывает появление разности потенциалов между ее выводами. При этом через последовательно подключенную к термоэлектрической батарее посредством электрических проводов лампу накаливания проходит электрический ток, который вызывает ее свечение. Металлический радиатор служит для повышения температуры второго спая батареи термоэлементов за счет выделяемой лампой накаливания теплоты. 1 ил.

Изобретение относится к приборостроению, в частности к осветительным приборам.

В труднодоступных отдаленных районах, где получение электрической энергии затруднено, актуальным является вопрос освещения бытовых помещений. Этот вопрос решается путем использования различных типов горючих веществ (например, в виде свечей, лучин, керосиновых ламп и т. п.), а также электрических осветительных приборов, работающих на различных видах аккумуляторов электрической энергии [1]. Недостатком указанных способов является их низкая эффективность, кратковременность, а при использовании горючих веществ, кроме того, отрицательное воздействие на человека и окружающую среду.

Известен термоэлектрический генератор электрической энергии [2], который мог бы быть использован для питания осветительного прибора. Термоэлектрический генератор электрической энергии представляет собой агрегат электропитания, состоящий из источника тепловой энергии, приведенного в тепловой контакт с первым спаем термоэлектрической батареи, токопроводящих цепей и радиатора, охлаждающего вторые спаи термоэлектрической батареи. За счет перепада температуры между спаями термоэлектрической батареи на ее контактах возникает разность потенциалов. При подключении к выводам термоэлектрической батареи нагрузки через нее течет электрический ток. Нагрузка запитывается электрической энергией. В качестве источников тепловой энергии в термоэлектрическом генераторе применяются атомные реакторы, источники тепла с радиоактивными изотопами, используются химические реакции горения или тепловая энергия, излучаемая Солнцем.

Недостатком термоэлектрического генератора является обязательное наличие источника тепловой энергии.

Целью изобретения является разработка осветительного прибора с использованием полупроводникового термоэлектрического генератора для выработки электрической энергии без внешнего источника тепловой энергии.

Конструкция осветительного прибора показана на чертеже.

Осветительный прибор содержит термоэлектрическую батарею 1, на первом спае которой расположена емкость 2 с испаряющейся жидкостью 3, а на втором спае - металлический радиатор 4, представляющий собой плоскую пластину с плафоном в виде усеченного конуса. Лампа накаливания 5 помещена в пространство, ограниченное плафоном, и посредством электрических проводов 6 подключена к термоэлектрической батарее 1. Осветительный прибор крепится на подставке 7.

Осветительный прибор работает следующим образом.

Налитая в емкость 2 жидкость 3 в процессе своего испарения понижает температуру первого спая термоэлектрической батареи 1. Возникающая при этом разность температур между спаями термоэлектрической батареи 1 вызывает появление разности потенциалов между ее выводами. При этом через последовательно подключенную к термоэлектрической батарее 1 посредством электрических проводов 6 лампу накаливания 5 проходит электрический ток, который вызывает ее свечение. Металлический радиатор 4 служит для повышения температуры второго спая батареи термоэлементов 1 за счет выделяемой лампой накаливания теплоты.

Литература 1. Енохович А.С. Справочник по физике. М.: Просвещение, 1990. - 384 с.

2. Анатычук Л.И. Термоэлементы и термоэлектрические устройства: Справочник. Киев: Наук. думка, 1979. - 768 с.

Формула изобретения

Осветительный прибор, содержащий лампу накаливания и устройство электропитания, отличающийся тем, что устройство электропитания выполнено в виде термоэлектрической батареи, на первом спае которой расположена емкость с испаряющейся жидкостью, а на втором спае - металлический радиатор, представляющий собой плоскую пластину с плафоном в виде усеченного конуса, причем лампа накаливания помещена в пространство, ограниченное плафоном, и посредством электрических проводов подключена к термоэлектрической батарее, осветительный прибор крепится на подставке.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к термоэлектрическим полупроводниковым холодильникам, предназначенным для охлаждения или термостатирования капилляра хроматографической колонки и его быстрого нагрева при проведении газового анализа с помощью хроматографа

Изобретение относится к холодильной технике, а именно к термоэлектрическому холодильному оборудованию

Изобретение относится к конструкции термоэлектрического устройства и способу его изготовления

Изобретение относится к установкам для производства тепла или холода и предназначено для использования преимущественно в транспортных кондиционерах воздуха

Изобретение относится к системам нагрева и охлаждения жидкости, а именно к устройствам, работа которых основана на эффекте Пельтье, и может быть использовано в машиностроении, автомобилестроении, в холодильной технике и медицине, а также в пищевой промышленности

Изобретение относится к системам нагрева и охлаждения жидкости в устройствах, использующих термоэлектрические батареи, работа которых основана на эффекте Пельтье, и может применяться в машиностроении, в частности в автомобильной технике, холодильной технике, медицинской технике и т.д

Изобретение относится к термоэлектрическим полупроводниковым холодильникам, предназначенным для охлаждения или термостатирования капилляра хроматографической колонки и его быстрого нагрева при проведении газового анализа с помощью хроматографа

Изобретение относится к осветительным устройствам с встроенным источником энергии

Изобретение относится к устройствам наружного освещения в темное время суток

Изобретение относится к приборостроению, в частности к осветительным приборам

Изобретение относится к автономным электроосветительным установкам

Изобретение относится к светотехнике и может быть использовано в качестве осветительного устройства, установленного на столбах (или других устройствах крепления) вдоль автомобильных и железных дорог, в пешеходных зонах, парковых зонах и на других объектах или закрепленного в различных помещениях к потолку, к стене и т.д

Изобретение относится к автоматизированным системам управления наружным освещением, в частности к управлению освещением пассажирских железнодорожных платформ

Изобретение относится к альтернативной энергетике и предназначено для естественного освещения объектов различного назначения

Изобретение относится к области энергетики, а именно к возобновляемым источникам энергии. Техническим результатом является освещение объектов или участков поверхностей в условиях отсутствия энергоснабжения с возможностью длительной и круглогодичной эксплуатации. В качестве альтернативных источников энергии используются солнечная радиация и вихревой ветровой поток, организованный внутри полой конусной многогранной опоры. Преобразователем солнечной радиации в электрическую энергию служит неподвижный конусный оптически активный купол и конусная солнечная батарея, установленная с возможностью вращения. Выработка электроэнергии происходит также за счет энергии вихревого воздушного потока, организованного внутри полой части многогранной опоры (МО), действующего на лопасти аэродинамической формы двух трехлопастных электроветрогенераторов (ЭВГ). Трехлопастные ЭВГ жестко закреплены на одном общем валу в цилиндрической части полой МО и вращаются в двух параллельных плоскостях, причем расстояние между плоскостями вращения должно быть не менее диаметра лопастей трехлопастного электроветрогенератора (ЭВГ). Лопасти трехлопастного ЭВГ, находящегося в первой параллельной плоскости, смещены на 60° относительно лопастей трехлопастного ЭВГ, находящегося во второй параллельной плоскости. Все лопасти трехлопастных ЭВГ имеют аэродинамический профиль. Лопасти двух трехлопастных ЭВГ закреплены в алюминиевых ободах, на внешней поверхности которых расположены магниты с чередованием полюсов, напротив которых в цилиндрической части полой МО размещены обмотки катушек, причем число магнитов не должно совпадать с числом обмоток катушек. Вихревой воздушный поток внутри полой конусной части МО организован за счет винтовой формы граней этой опоры и разности температуры на входе конусной (конфузорной) и выходе (диффузорной) частей полой многогранной опоры. Входные окна, предназначенные для приема поступающего воздуха, расположены в основании полой многогранной опоры. Входные боковые стенки обеспечивают первоначальную закрутку входящего воздушного потока внутри полой многогранной опоры. Выход воздушного потока из полой многогранной опоры происходит через прямоугольные окна, расположенные в верхней части диффузора. Непосредственная выработка электроэнергии происходит при пересечении магнитными силовыми линиями витков обмотки, что обеспечивается вращением лопастей трехлопастных ЭВГ совместно с алюминиевыми ободами и магнитами относительно витков обмоток под действием вихревого воздушного потока. Электроэнергия, вырабатываемая тандемными фотоэлектронными модулями, накапливается в аккумуляторных батареях. С помощью электронного пульта управления по команде датчика освещенности подается сигнал на включение и выключение светодиодных ламп для освещения окружающего пространства. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетики, а именно к возобновляемым источникам энергии. Техническим результатом является освещение объектов или участков поверхностей в условиях отсутствия энергоснабжения, при этом использование МГАЭС значительно снизит нагрузку на традиционные электростанции и улучшит экологическую обстановку окружающей среды. В качестве альтернативных источников энергии используются энергии солнечной радиации и ветра. МГАЭС содержит полую опору, корпус ветродвигателя, выполненный в виде полого шара, в центральную часть которого встроены конфузор и диффузор, и поворотный механизм корпуса ветродвигателя. На выходе конфузора с наружной стороны установлено кольцо, создающее дополнительное разряжение за полым шаром, что усиливает скорость потока воздуха, проходящего через конфузор и диффузор. Кроме того, МГАЭС включает в себя цилиндрический штырь поворотного механизма, подшипники скольжения, цилиндрическую опорную шайбу, крепежные болты, опорный шарик, сетку, установленную на входе в конфузор для защиты от птиц, ветродвигатели с лопастями аэродинамического профиля, вращающиеся в трех параллельных плоскостях, которые расположены в средней части между конфузором и диффузором, вал ветродвигателей, который с помощью шариковых подшипников закреплен в стойках полого шара, средний подвижный фигурный обод для трехлопастного ветродвигателя, расположенный в средней параллельной плоскости, два крайних обода для двухлопастных ветролопастей установлены со смещением 90° друг относительно друга, магниты, размещенные с чередованием полюсов на внешней стороне двух крайних подвижных ободов для двухлопастных ветролопастей, обмотки катушек, расположенные на внутренней стороне фигурного обода напротив магнитов, размещенных с чередованием полюсов на внешней стороне крайних подвижных ободов двухлопастных ветролопастей, три магнита продольной намагниченности размещены со смещением в 120° на внешней стороне среднего подвижного фигурного обода напротив концов лопастей аэродинамического профиля трехлопастного ветродвигателя, неподвижный обод с магнитным кольцом радиальной намагниченности, которое расположено напротив трех магнитов продольной намагниченности, две пары параллельных кольцевых канавок под подшипниковые шарики, расположенные друг напротив друга на внешней стороне фигурного обода и на внутренней поверхности неподвижного обода, тандемные солнечные батареи, расположенные на наружной поверхности полого шара и на полой опоре МГАЭС, аккумуляторные батареи, реле-регулятор зарядки аккумуляторных батарей, электронный пульт управления, датчик света и две светодиодные лампы, размещенные на полой опоре. 4 з.п. ф-лы, 6 ил.
Наверх