Бесконтактный способ измерения вязкости

 

Использование: в области диагностики реологических и термофизических свойств жидкостей. Сущность: способ основан на зависимости от вязкости жидкости эволюции расходимости отраженного пучка в процессе развития углубления с начала облучения. Технический результат - сокращение времени измерений. 2 ил.

Изобретение относится к области диагностики реологических и термофизических свойств жидкостей.

Известны способы дистанционного (бесконтактного) определения вязкости [1, 2], в которых на слой исследуемой жидкости направляют пучок оптического излучения (в [1] излучение поглощается жидкостью, а в случае прозрачных жидкостей [2] используют поглощающую подложку), которое посредством индуцируемых им термокапиллярных (ТК) сил вызывает вихревые движения частиц жидкости и деформирует свободную поверхность слоя. Кривизна образуемого на поверхности жидкости ТК углубления зависит от вязкости жидкости.

Измерения вязкости в этих способах проводят по расходимости пучка отраженного от стационарного (т.е., находящегося в состоянии динамического равновесия при постоянной мощности излучения) ТК углубления. Расходимость пучка можно определить по его диаметру, измеряемому на экране, перпендикулярном сечению каустики пучка. Стационаризация углубления с начала облучения слоя и, следовательно, стационаризация диаметра отраженного пучка длится несколько десятков секунд [1]. При этом, вначале наблюдается быстрый рост диаметра до размера примерно 60-80% от стационарного, затем рост замедляется вплоть до того, что момент выхода диаметра на установившееся значение становится трудноопределим. Это замедляет процесс измерения вязкости и может приводить к ошибкам из-за измерений по еще неустановившейся расходимости.

Предлагаемый способ основан на зависимости от вязкости жидкости эволюции расходимости отраженного лазерного пучка в процессе развития ТК углубления с начала облучения (фиг. 1). Здесь: 1 - лазерный пучок, индуцирующий ТК углубление 2, а 3 - часть пучка, отраженная свободной поверхностью жидкости. Угол равен половине угла расходимости отраженного пучка.

В момент t0 начала облучения, когда поверхность жидкости еще плоская, (t0) = , где угол равен половине угла собственной расходимости индуцирующего пучка. По мере развития ТК углубления (t0<t<t) оно действует как собирающее зеркало с уменьшающимся в течение времени радиусом кривизны.

На фиг.2 приведены зависимости угла от времени с начала облучения. Зависимости получены при температуре 22oС для жидкостей с вязкостью: бутанол - 1, =2,8 сП [3] (верхняя кривая); бензиловый спирт =5,5 сП [3] (средняя) и вазелиновое масло =28 сП (вязкость измерена капиллярным вискозиметром ВПЖ-2, нижняя кривая). ТК углубление индуцировали пучком He-Ne лазера (ЛГН-208а, =633 Нм, Р1 мВт). Так как данные жидкости прозрачны на 633 Нм, использовали поглощающую излучение эбонитовую подложку. Угол определяли, записывая видеокамерой изображения двух сечений отраженного пучка (фиг.1, сечения А и Б).

На начальном этапе эволюции расходимости наблюдается стадия, когда ТК углубление лишь частично компенсирует собственную расходимость пучка, затем происходит его перефокусировка. До и некоторое время после перефокусировки пучка угол проходит ряд совпадающих по абсолютной величине значений. Будим считать до префокусировки отрицательным, а после перефокусировки - положительным. На графике фиг. 2 все зависимости выходят из точки = =-0,086 град; штриховой линией показаны участки зависимостей, где измерить не удалось из-за малых значений диаметров сечений пучка, а пунктирные горизонтальные линии являются асимптотами зависимостей, т.е. соответствуют их установившимся (t>60 с) значениям.

В таблице приведены примеры эволюционных характеристик расходимости отраженного пучка, которые могут быть использованы для измерений вязкости. Отметим, что для регистрации этих характеристик достаточно простейшей электронной схемы и от одного до нескольких фотодиодов. Цифры в таблице основаны на данных фиг.2.

Таким образом наибольшие различия в эволюции расходимости пучка при разной вязкости наблюдаются в первые секунды облучения, что и позволяет на порядок сократить время измерения по сравнению с прототипом.

Источники информации 1. Авторское свидетельство 1188588, G 01 N 11/16, 1985, БИ 40.

2. Авторское свидетельство 1242764, G 01 N 11/16, 1986, БИ 25.

3. Справочник химика, T. 1, М.-Л., "Химия", 1966.

Формула изобретения

Способ измерения вязкости, при котором в слое жидкости лазерным пучком индуцируют термокапиллярный конвективный вихрь, приводящий к деформации свободной поверхности жидкости в виде углубления, а о вязкости судят по расходимости части индуцирующего лазерного пучка отраженной поверхностью углубления, отличающийся тем, что вязкость определяют по эволюции изменения расходимости с момента начала облучения слоя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к измерительной технике и может использоваться в самых разных областях науки и техники для определения некоторых физико-механических характеристик поверхностного слоя жидкостей - скорости движения, коэффициента поверхностного натяжения, вязкости

Изобретение относится к области техники для экструдирования биополимеров и предназначено для исследования поведения экструдата в компрессионных затворах и полостях утечек одношнековых прессов

Изобретение относится к способам измерения вязкости жидкостей, которые находят применение в химической и лакокрасочной отраслях промышленности

Изобретение относится к устройствам для измерения реологических свойств молочных продуктов в широком диапазоне вязкости

Изобретение относится к измерительной технике и может быть использовано в электрокаплеструйных маркировочных принтерах

Изобретение относится к области исследования поведения экструдируемых биополимеров

Изобретение относится к технике испытания полимерных материалов, в частности высоковязких жидкостей, и может быть использовано для анализа течения полимерного материала при растяжении в процессе переработки, например, при одноосной вытяжке струи для получения волокон или пленки экструзионным методом

Изобретение относится к области теплофизических измерений и вязкости и может быть использовано для определения теплофизических свойств и вязкости жидкости или газа, в том числе и в быстропротекающих и необратимых процессах, в потоках при неустановившемся режиме и т.п., а также для измерения нестационарных температур (скоростей)

Изобретение относится к области измерительной техники, в частности к бесконтактным аэрогидродинамическим способам измерения вязкости жидкостей по их колебаниям, и может найти применение в таких отраслях промышленности, как химическая, лакокрасочная и пищевая

Изобретение относится к области определения свойств полимерных материалов, в частности индекса расплава, непосредственно в процессе производства

Изобретение относится к области реологии, вискозиметрии и может быть использовано для измерения объемной вязкости различных сред в нефтегазовой, нефтехимической, химической, пищевой промышленности, в различных областях науки и техники, а также в медицине, фармакологии и т.д

Изобретение относится к конструированию машин, в частности к устройствам замера уровня и качества масла двигателей внутреннего сгорания, например тепловозов, путевых машин

Изобретение относится к приборостроению и может быть использовано при изготовлении вискозиметров для измерения реологических свойств жидкостей
Наверх