Полупроводниковый металлооксидный датчик газов

 

Изобретение относится к области газоаналитической техники и аппаратуры, в частности к полупроводниковым металлооксидным датчикам для контроля токсичных и взрывоопасных газов. Сущность: датчик газов представляет собой кристалл кремния, покрытый изолирующим слоем диоксида кремния, на котором размещены нагреватель-термодатчик, выполненный в виде резистора из платины с подслоем титана, электроды встречно-штырьевой конструкции из того же материала для газочувствительного слоя и чувствительный слой, представляющий собой поликристаллическую пленку диоксида олова или другого металлооксидного полупроводника. Кристалл помещен в стандартный четырехвыводной металлостеклянный корпус, легко встраиваемый в газовые системы. Технический результат изобретения заключается в упрощении конструкции и повышении надежности газового датчика. 2 ил.

Изобретение относится к области газоаналитической техники и аппаратуры, в частности к полупроводниковым металлооксидным датчикам для контроля токсичных и взрывоопасных газов.

Известны конструкции датчиков, которые представляют собой изолирующую подложку, на которой находится резистивный нагревательный элемент из металла с изолирующим покрытием или без него, термодатчик для контроля температуры чувствительного элемента, газочувствительный элемент с электродами для снятия выходного сигнала в ответ на действие газа, влажности и других внешних воздействий. Перечисленные выше элементы могут располагаться как на одной стороне подложки, так и с противоположных сторон /1,2/.

Однако эти датчики отличаются сложностью конструкций и технологии их изготовления, а также их высокой стоимостью за счет большого числа операций. Возможно ухудшение изоляционных свойств соответстствующих покрытий при высоких температурах и в результате этого возникновения электрической связи между элементами датчика, расположенными в различных слоях.

Наиболее близким по технической сущности и достигаемым результатам к данному изобретению является конструкция газового датчика, содержащая резистивный нагревательный элемент и термодатчик из платины и титана одинаковой топологии, размещенные по краям кристалла датчика. В центре кристалла находится контактная система из того же материала для газочувствительного слоя. Газочувствительный элемент представляет собой полупроводник из оксида металла /3/.

Недостатком данного устройства является расположение нагревателя на одном краю кристалла датчика, что приводит к возникновению градиента температуры вдоль кристалла, большая рассеиваемая мощность, а также и то, что функцию нагревателя и термодатчика выполняют два разных резистивных элемента.

Изобретение направлено на упрощение конструкции, уменьшение площади кристалла датчика, снижение потребляемой мощности, улучшение равномерности нагрева и повышение надежности газового датчика. Это достигается тем, что нагреватель расположен по периметру вдоль трех сторон кристалла и совмещен в одной тонкопленочной структуре с термодатчиком, а контактные слои выполнены в виде однослойных планарных структур. Расстояние между крайними элементами датчика уменьшается до 0,8 мм.

Сущность изобретения поясняется чертежом, где на фиг.1 представлен вид газового датчика сверху; на фиг.2 - поперечный разрез.

Позиции на чертеже обозначают: подложка из кремния - 1; изолирующий слой диоксида кремния - 2; нагреватель-термодатчик платина с подслоем титана - 3; контакты под чувствительный элемент - 4, 5; газочувствительный слой - 6; контактные площадки - 7.

Газовый датчик представляет собой кристалл кремния, покрытый слоем диоксида кремния, на котором скомпонованы элементы датчика по стандартной планарной технологии. Контактные площадки из платины с подслоем титана сгруппированы с одной стороны кристалла, чтобы облегчить выполнение заключительной технологической операции нанесения диоксида олова с использованием маски или фотолитографии.

Вдоль трех других сторон кристалла размещен резистор на основе платины с подслоем титана, который одновременно является и термодатчиком. Такая конструкция нагревателя имеет стандартное напряжение питания (1,5 , 3 , 6 , 12 В) и малую потребляемую мощность (менее 500 мВт). Газочувствительный элемент представляет собой поликристаллическую пленку металлооксидного полупроводника (например, диоксида олова), нанесенную на поверхность кристалла через маску или в окна, вскрытые при фотолитографии. Поскольку удельное сопротивление чувствительного слоя велико, то контактная система, помещенная в центр кристалла, представляет собой встречно-штырьевую конструкцию, что согласуется с зернистой структурой поликристаллических пленок.

Кристалл помещен в стандартный четырехвыводной металлостеклянный корпус типа ТО-5, легко встраиваемый в газовые системы.

В качестве примера исполнения датчика можно предложить следующую конструкцию. На кристалле размером 1000x1000 мкм из Si, покрытого слоем SiO2, толщиной порядка 1 мкм, размещены элементы датчика, выполненные по стандартной пленарной технологии. Контактные площадки размером 120x120 мкм из платины с подслоем титана сгруппированы вдоль одной стороны кристалла. Нагреватель (термодатчик), выполненный из платины с подслоем титана, имеет топологию тонкопленочного резистора с сопротивлением около 60 Ом и расположен по периметру вдоль трех сторон кристалла. В центре кристалла помещена контактная система для газочувствительного слоя из того же материала, представляющая собой встречно-штырьевую конструкцию из (13-17) контактных полосок шириной (18 - 20) мкм с зазором (19-21) мкм. Газочувствительный элемент представляет собой поликристаллическую пленку любого металлооксидного полупроводника, нанесенную на поверхность кристалла через маску или в окна, вскрытые фотолитографией, магнетронным (ионно-лучевым) реактивным распылением или другим способом.

Устройство работает следующим образом.

Перед началом работы чувствительный элемент датчика 6 нагревают до рабочей температуры, соответствующей максимальной адсорбции выбранного газа. Нагрев осуществляется путем подачи разности потенциалов заданной величины (1,5-6) В на контакты нагревателя 3. Производится регистрация исходного сопротивления газочувствительного слоя 6 и контролируется его рабочая температура по величине сопротивления нагревателя. Затем датчик помещается в анализируемую газовую смесь. Адсорбция газа приводит к изменению сопротивления пленки газочувствительного слоя. Регистрация изменения величины сопротивления газочувствительного слоя позволяет судить о концентрации газа в анализируемой газовоздушной смеси.

Источники информации 1. Патент Японии 1-196556, G 01 N 27/12, опублик. 1989.

2. Патент Германии 0018.96, G 01 N 27/14, опублик. 08.12.94.

3. Патент РФ 2114422, G 01 N 27/12, опублик. 1998 (прототип).

Формула изобретения

Полупроводниковый металлооксидный датчик газов, представляющий собой изолирующую подложку с размещенными на ней нагревателем, электродами для газочувствительного слоя и газочувствительным слоем, отличающийся тем, что нагреватель расположен по периметру вдоль трех сторон кристалла и совмещен в одной тонкопленочной структуре с термодатчиком, а контактные слои выполнены в виде однослойных планарных структур.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к аналитической химии газовых фаз с применением метода пьезокварцевого микровзвешивания

Изобретение относится к измерительной технике, а именно к датчикам контроля химического состава воздушных газовых сред, и может быть использовано для регистрации содержания аммиака

Изобретение относится к аналитической химии органических соединений и может быть использовано при анализе газовых выбросов производства красителей

Изобретение относится к аналитической химии органических соединений и может быть применено для селективного определения бутилацетата как основного компонента газовых выбросов мебельного производства на уровне 1/2 ПДKрз в воздухе рабочей зоны с использованием матрицы пьезокварцевых резонаторов с предварительной модификацией их электродов сорбентами природы
Изобретение относится к исследованиям физико-химических свойств веществ, а именно к измерению содержания водорода в естественных средах и технических объектах, и может быть использовано для контроля утечек водорода из систем охлаждения мощных электрогенераторов, систем питания двигателей внутреннего сгорания, работающих на водородном топливе, для локализации участков вероятного растрескивания магистральных газопроводов или обнаружения мест выделения водорода

Изобретение относится к аналитической химии органических соединений (обнаружение и анализ) и может быть применено при анализе газовых выбросов предприятий по производству анилинокрасочной продукции и боеприпасов

Изобретение относится к аналитической химии органических соединений (обнаружение и анализ) и может быть применено при анализе газовых выбросов предприятий по производству анилинокрасочной продукции и боеприпасов

Изобретение относится к устройствам, предназначенным для измерения концентрации газовых компонентов, конкретно к области каталитической части газочувствительных устройств, и может быть использовано в системах управления котельными теплоэлектростанций, в жилищно-коммунальном хозяйстве, для контроля состояния окружающей среды

Изобретение относится к области газового анализа, в частности к детектирующим устройствам для регистрации и измерения содержания монооксида углерода

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования нитроэтана в воздухе рабочей зоны предприятий фармацевтической и парфюмерной промышленности

Изобретение относится к газовому анализу, в частности к детектирующим устройствам для регистрации и измерения содержания оксида углерода

Изобретение относится к области аналитического приборостроения, а именно к чувствительным элементам состава газов

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для измерения влажности различных газов

Изобретение относится к технике проведения анализа газовых сред, содержащих органические соединения, и может быть применено для увеличения селективности при анализе многокомпонентных смесей

Изобретение относится к области измерения концентраций водорода и может быть использовано при изготовлении газоанализаторов взрывоопасных концентраций водорода в космической технике, автомобильной промышленности, химической промышленности и т.д

Изобретение относится к области производства интегральных схем (ИС) и может быть использовано для контроля содержания паров воды в подкорпусном объеме ИС как в процессе их производства, так и при испытаниях и на входном контроле

Изобретение относится к способам измерения концентрации металлов в растворе и может быть использовано, например, на производстве печатных плат для экспрессного определения концентрации ионов меди и железа (III) или в пунктах приема серебросодержащих отходов для экспрессного определения серебра в отработанных фиксажных растворах
Наверх