Углеродная текстурированная нить и способ её получения

 

Изобретение относится к технологии получения химических волокон, в частности к способу получения углеродных нитей. Способ включает вязание трикотажного полотна из гидратцеллюлозной нити, термохимическую обработку полученного полотна с последующим роспуском его в нить. Вязание проводят кулирным переплетением, при плотности вязания по горизонтали и по вертикали, которые определяют из соотношений с количеством извитков углеродной текстурированной нити от 1,6 до 2,5 и от 1,1 до 1,5 соответственно. Подъем температуры при термообработке осуществляют в интервале 250-400oС со скоростью 5-10 град./ч, а в интервале 400-950oС со скоростью 80-100 град./ч. Углеродная нить, полученная данным способом, имеет 30-100 извитков на длине 10 см и обеспечивает разрывную нагрузку 10-30 гс/текс, разрывное удлинение 1,00,5% при содержании углерода не менее 94%. Технический результат изобретения состоит в улучшении качества углеродной нити и снижении ее стоимости при одновременном повышении производительности способа и уменьшении его энергозатрат. 2 с. и 3 з.п.ф-лы, 1 табл.

Группа изобретений относится к углеродным материалам и технологии их получения, в частности к изготовлению объемных организованных структур из углеродных нитей, используемых в качестве армирующих элементов композиционных материалов, теплозащиты электротермического оборудования, эластичных нагревательных элементов, покрытий для радиопоглощения, медицинских сорбентов, электродов и др.

Для получения углеродных волокон с требуемой структурой и свойствами в промышленности чаще всего используют нити из полиакрилонитрильных (ПАН) волокон и гидратцеллюлозных (ГЦ) волокон. Углеродные нити из ПАН волокон, обладая высокой прочностью и жесткостью (модулем упругости), используются преимущественно в композиционных материалах конструкционного назначения. В то же время углеродные волокна из ГЦ, имея по сравнению с углеродными волокнами из ПАН более низкие значения прочности и модуля упругости, чаще всего применяются как теплозащитные, электрорезистивные, радиопоглощающие, фильтрующие, сорбирующие материалы. Для этих применений главными показателями углеродных нитей из ГЦ являются не прочность, а высокая удельная поверхность, пористая структура, электрическая проводимость, сорбционная способность. Они могут перерабатываться в объемные текстильные структуры - ткани и вязаные полотна, в которых нити образуют объемные переплетения, поскольку в отличие от углеродных нитей из ПАН нити из ГЦ не являются хрупкими.

Следует подчеркнуть, что для многих применений углеродных волокон важно обеспечить объемность не только текстильных структур, но объемность самих нитей. Одним из известных способов создания объемности различных текстильных нитей является текстурирование (Смирнов Л.С. Технология трикотажа из текстурированных нитей. М.: Легкая индустрия, 1975, с.1-20). Большинство методов текстурирования заключается в использовании процессов усадки при термической фиксации, например, термопластичных волокон, которые в результате теплового воздействия располагаются в нити по извилистым объемным траекториям, образуя так называемые извитки и отклоняясь от однонаправленной формы. Одним из известных способов получения углеродных волокон из вискозных нитей является распускание углеродных структур, например углеродного трикотажа, в нить, из которой, в свою очередь, можно изготавливать различные волокнистые и композиционные материалы (Пилиповский Ю.Л. и др. Композиционные полимерные материалы, армированные трикотажными структурами на основе углеродных нитей. В сб. научн. трудов "Исследования в области композиционных материалов" Института проблем материаловедения НАН Украины. Киев, 1995, стр. 4-17). В углеродной нити, полученной этим способом, присутствует нерегулируемая извилистость, образующаяся в процессе усадки вискозного волокна.

Также известен способ получения углеродного волокнистого материала, используемого в качестве наполнителя при изготовлении композиционных материалов в различных областях техники (RU 2047674, кл. D 01 F 9/12, 1995).

Известно, что процессы усадки, сопровождающие пиролиз ГЦ-волокна и его превращение в углеродное волокно при температуре до 280oС, связаны с удалением из ГЦ свободной и связанной воды, образованием летучих продуктов и значительной потерей массы. В интервале температур 250-400oС происходит разложение дегидроцеллюлозы, сопровождающееся образованием газообразных соединений. При температуре выше 400oС начинается ароматизация углеродсодержащего остатка волокна с выделением метана, а выше 800oС - водорода. На разных стадиях термообработки процесс усадки в значительной мере зависит от скорости нагрева, которая обеспечивает степень завершенности формирования структуры углеродного волокна, а следовательно, и его свойств. В литературе (Фиалков А. С. Углерод, межслоевые соединения и композиты на его основе. М.: Аспект Пресс, 1997, стр. 616-628) описан способ получения углеродных материалов из ГЦ-волокон путем изготовления текстильных форм, например трикотажных полотен, из вискозы с последующей химико-термической обработкой. В промышленности получила наибольшее распространение технология, которая включает пропитку вискозного полотна катализаторами (антипиренами), операцию сушки и термическую обработку в печах периодического действия до температур 1000-1200oС.

Наиболее близким к предложенному техническому решению является упомянутый выше способ получения углеродной нити путем термообработки и роспуска углеродного трикотажного полотна и углеродная нить, полученная этим способом (см. вышеуказанную статью Пипиловского Ю.Л.). Полученная этим способом углеродная нить обладает неконтролируемой извилистостью (объемностью), являющейся вредной, особенно для использования в конструкционных материалах. Объемность такой нити не регламентируется требованиями нормативно-технической документации.

Задачей предложенного способа является обеспечение целенаправленного управления процессом усадки и получения текстурированной углеродной нити с регулируемой объемной геометрией путем образования упомянутой извилистости в углеродном волокне.

Технический результат изобретения состоит в улучшении качества углеродной нити, полученной предложенным способом, с одновременным повышением производительности процесса превращения вискозной нити в углеродную, при этом уменьшаются энергозатраты и стоимость углеродной нити.

Поставленный результат достигается тем, что управление процессом текстурирования углеродной нити ведут как за счет выбора типа переплетения и размеров структурной ячейки трикотажного вискозного полотна, так и за счет управления процессом усадки, т. е. регулируя режимы его термической обработки. Согласно предлагаемому способу получения углеродной текстурированной нити, включающему вязание трикотажного полотна из гидратцеллюлозной нити, химико-термическую обработку указанного полотна с последующим роспуском его в нить, при этом исходная гидратцеллюлозная вискозная нить подвергается операции вязания на трикотажных машинах кулирным переплетением, например, типа "ластик" 1+1. При этом плотность вязания по горизонтали (количество петельных столбиков на длине 10 см) и плотность вязания по вертикали (количество петельных рядов на длине 10 см) определяют из их соотношений с количеством извитков углеродной текстурированной нити от 1,6 до 2,5 (петельные столбики) и от 1,1 до 1,5 (петельные ряды) соответственно. Полученное вискозное полотно пропитывается катализатором, а затем его подвергают термической обработке со скоростью подъема температуры 5-10 град. в час в интервале от 250-400oС, дальнейший подъем температуры в интервале от 400 до 950oС осуществляют со скоростью 80-100 град. в час. Остывание до комнатной температуры происходит вместе с печью. Полученное углеродное трикотажное полотно распускается в нить с помощью мотальной машины.

Углеродная текстурированная нить, полученная по вышеописанному способу, имеет в свободном состоянии 30-100 извитков на длине 10 см и обеспечивает разрывную нагрузку 10-30 гс/текс, разрывное удлинение 1,00,5% и содержание углерода не менее 94%. Степень ее извитости находится в интервале значений 35-90%, а линейная плотность в растянутом состоянии 13510 текс.

Такая углеродная нить в свободном состоянии приобретает близкую к спиралеобразной объемную форму, и может иметь различное число извитков на определенной длине в свободном состоянии. Новым в этом техническом решении является возможность целенаправленного регулирования макроструктуры текстурированной углеродной нити, объемность которой определяется заданным количеством извитков, а качество - структурой волокна и содержанием в нем углерода. Трикотажное полотно из такой нити в зависимости от типа трикотажного переплетения может иметь толщину, в два-три раза большую, чем из нетекстурированной нити. Изготовленная из текстурированной нити ткань также приобретает дополнительную объемность. Практический интерес представляют, например, комбинированные текстильные формы, в которых совместно используются как текстурированная углеродная нить, так и нити другой природы - хлопчатобумажные, синтетические, металлические проволоки и др. За счет объемности текстурированной углеродной составляющей эти ткани или трикотажные полотна приобретают увеличенную объемность и лучше выполняют свои функции, например, как радиопоглощающие материалы.

Пример осуществления способа.

Для получения углеродной текстурированной нити со степенью извитости 75-80% из вискозной технической нити линейной плотности 192 текс х 2 на плоскофанговой трикотажной машине 6 класса изготавливают трикотажное полотно переплетением "ластик" 1+1 со следующими параметрами: число петельных рядов на длине 10 см - 36, число петельных столбиков на длине 10 см - 50. Полотно имеет средние значения поверхностной плотности 1400 г/м2.

Вискозное полотно отмывают в ацетоне, пропитывают катализатором - кремнийорганическим раствором в ацетоне, высушивают и подвергают термообработке в печи периодического действия в среде природного газа. Подъем температуры в интервале от 250 до 400oС производится со скоростью 10 град./ч, подъем температуры в интервале от 400 до 950oС - со скоростью 80 град./ч. Охлаждение вместе с печью. После термообработки полученное углеродное трикотажное полотно отмывают в горячей воде, сушат, распускают с помощью мотальной машины МТМ-150-2, и углеродную текстурированную нить наматывают на конусные бобины крестовой намоткой.

Нить имеет следующие характеристики: Среднее количество извитков на длине 10 см - 70 Степень извитости, % - 80 Средняя линейная плотность нити в растянутом состоянии, текс - 135 Отношение количества извитков к количеству петельных столбиков исходного вискозного полотна на длине 10 см - 1,92 Отношение количества извитков к количеству петельных рядов исходного вискозного полотна на длине 10 см - 1,4 Относительная разрывная нагрузка, гс/текс - 255 Относительное разрывное удлинение, % - 1,00,8 Содержание углерода, % - 96,0.

Данные, полученные для различных вариантов исполнения технических решений, представлены в таблице.

Из приведенных в таблице данных следует, что оптимальными структурными характеристиками трикотажного вискозного полотна и режимами ее термообработки можно считать следующие: Количество петельных столбиков на длине 10 см - 32 - 36
Количество петельных рядов на длине 10 см - 48-50
Скорость подъема температуры от 250 до 400oС - 5-10 град./ч
Скорость подъема температуры от 400 до 950oС - 80 - 100 град./ч
Отношение количества извитков углеродной текстурированной нити к количеству петельных столбиков исходного вискозного трикотажного полотна на длине 10 см - 1,92 - 2,0
Отношение количества извитков углеродной текстурированной нити к количеству петельных рядов исходного вискозного трикотажного полотна на длине 10 см - 1,33 - 1,4
Соблюдение указанных характеристик структуры трикотажного вискозного полотна и режимов его термообработки позволяет осуществить способ получения и получить углеродную текстурированную нить, отраженную в формуле изобретения.

Снижение поверхностной плотности (количество петельных рядов и петельных столбиков) вискозного трикотажного полотна снижает объемность (степень текстурирования) углеродной нити. Изготовить вискозное полотно с большим количеством петельных рядов и петельных столбиков из нитей этой линейной плотности технически сложно.

Увеличение скорости подъема температуры в интервале от 250 до 400oС приводит к ухудшению качества углеродной нити за счет низкого содержания углерода. Снижение скорости подъема температуры в интервалах 250-400oС и 400-950oС существенно снижает производительность процесса превращения вискозной нити в углеродную, увеличивает энергозатраты и стоимость углеродной нити. Увеличение скорости подъема температуры в диапазоне 400-950oС ухудшает качество углеродной нити за счет чрезмерного снижения содержания углерода.

Одним из примеров полезного использования текстурированного углеродного волокна является углеродсодержащая ткань с радиопоглощающими свойствами. Такая ткань получена при использовании углеродной текстурированной нити (таблица, пример 1). Структура ткани - саржа 2х2. Толщина такой ткани составляет 0,6 мм, масса 1 кв. - 0,33 кг. Величина затухания сигнала электромагнитного излучения в диапазоне частот от 70 МГц до 286 МГц составляет 35 Дб. Для сравнения, ткань этой же структуры, изготовленная из нетекстурированной углеродной нити (табл., пример 9), снижает сигнал электромагнитного излучения до 19 Дб. Высокие характеристики снижения уровня электромагнитного излучения в ткани с использованием текстурированного углеродного волокна объясняется влиянием объемной (текстурированной) углеродной нити. Ее пространственное расположение в такой ткани позволяет существенно улучшить условия поглощения электромагнитных волн за счет их внутреннего отражения, дифракции и интерференции волн в организованной объемной структуре материала.


Формула изобретения

1. Углеродная текстурированная нить, отличающаяся тем, что она имеет в свободном состоянии 30-100 извитков на длине 10 см и содержание углерода в ней не менее 94%, а степень ее извитости находится в интервале значений 35-90%.

2. Нить по п.1, отличающаяся тем, что она выполнена с возможностью обеспечения ее линейной плотности в растянутом состоянии (13510) текс, разрывной нагрузки 10-30 гс/текс и разрывного удлинения (1,00,5)%.

3. Способ получения углеродной текстурированной нити, выполненной по п.1 или 2, включающий вязание трикотажного полотна из гидратцеллюлозной нити, пропитку его катализатором, химико-термическую обработку и последующий роспуск в нить, отличающийся тем, что вязание трикотажного полотна проводят с обеспечением отношения количества извитков нити в свободном состоянии на длине 10 см к количествам петельных столбиков и петельных рядов исходного трикотажного полотна на той же длине, находящегося в интервале значений 1,6-2,5 и 1,1-1,5 соответственно, при этом подъем температуры при термообработке полотна в интервале от 250 до 400С ведут со скоростью 5-10 град./ч, а в интервале температур от 400 до 950С - со скоростью 80-100 град./ч.

4. Способ по п.3, отличающийся тем, что перед термообработкой трикотажное полотно пропитывают катализатором, например, кремнийорганическим.

5. Способ по любому из пп.3 и 4, отличающийся тем, что вязание ведут кулирным переплетением типа "ластик" 11.

РИСУНКИ

Рисунок 1

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.03.2008

Извещение опубликовано: 27.03.2008        БИ: 09/2008




 

Похожие патенты:

Изобретение относится к области получения углеродно-волокнистого адсорбента (УВА)

Изобретение относится к производству химических волокон, а именно к установкам для графитизации углеродных волокнистых материалов, сформированных в виде нитей

Изобретение относится к технологии получения волокон из углеродистой смолы, в том числе из сольватированной мезофазной смолы

Изобретение относится к способу и устройству для вытягивания потоком газа волокон из сольватированных смол

Изобретение относится к области химического машиностроения, конкретно к установкам высокотемпературного химического осаждения тугоплавких покрытий из газовой фазы на углеграфитовые волокнистые материалы Из уровня техники известен способ нанесения карбидокремниевого покрытия на нить в двухкамерной установке при атмосферном давлении
Изобретение относится к технологии получения углеродных волокнистых материалов (УВМ) на основе гидратцеллюлозных волокон (ГЦВ), используемых в качестве наполнителя при изготовлении композиционных материалов в различных областях техники

Изобретение относится к оборудованию для изготовления текстильных материалов, содержащих углерод, углеродных волокнистых материалов, а более точнее к оборудованию для изготовления сорбционно-активных волокнистых углеродсодержащих материалов

Изобретение относится к оборудованию для производства химических волокон, в частности к аппарату для непрерывной низкотемпературной обработки ПАН-волокна

Изобретение относится к области получения углеродных волокон, в частности к выделению углеродных нанотрубок из углеродсодержащего материала

Изобретение относится к области получения углеволокнистых адсорбентов, а именно к устройствам активирования углеволокнистых материалов

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов
Изобретение относится к способу получения фуллеренов и других углеродных наноматериалов

Изобретение относится к технологии получения ультратонких углеродных волокон, которые могут быть использованы в качестве наполнителей, добавляемых к смоле или подобным материалам

Изобретение относится к технологии получения волокнистых углеродных материалов каталитическим пиролизом

Изобретение относится к технологии получения углеродных волокнистых материалов каталитическим пиролизом

Изобретение относится к технологии получения углеродных волокнистых материалов, в частности к получению углеродных волокнистых структур, которые включают трехмерную сеть углеродных волокон

Изобретение относится к области производства прочных композиционных материалов

Изобретение относится к технологии получения длинных ориентированных жгутов углеродных нановолокон и может быть использовано при создании высокопрочных комплексных углеродных нитей и в качестве компонента композиционных материалов, применяемых в авто- и/или авиастроении
Наверх