Пирометр

 

Изобретение относится к информационно-измерительной и вычислительной технике. Пирометр включает вход из вещества, прозрачного в диапазоне используемых длин волн теплового излучения, два фотоэлектрических датчика интенсивности излучения с селекцией на разных длинах волн, два аналого-цифровых преобразователя, элемент сравнения, три элемента ИЛИ, элемент И, пять групп элементов И, задатчик коэффициента пропорциональности, два арифметических блока и формирователь переднего фронта импульсов. Технический результат - пирометр обеспечивает измерение температуры поверхности нагретых тел в широком интервале температур при варьируемых углах визирования и удалениях приемников излучений от их источников, исключение опорного источника излучений, повышение точности и надежности в работе, сокращение эксплуатационных затрат. 1 ил.

Изобретение относится к информационно-измерительной и вычислительной технике, а в частности к средствам бесконтактного измерения температуры поверхности нагретых тел, в т.ч. полупроводниковых пластин в технологических установках, изделий из металлов, керамики, пластмасс, при их термообработке, расплавов металлов в металлургии.

Известен способ бесконтактного измерения температуры (и пирометр на его основе) (см. Pepperhof W., Arch. Eisehuttenwes, 1959, В. 30, 3, р. 131-135), заключающийся в том, что "излучение поверхности регистрируют" под углом визирования 80o от нормали к поверхности излучения. В излучении выделяется компонента, поляризованная в плоскости наблюдения, и по интенсивности излучения этой компоненты определяется температура поверхности. (Выделенное кавычками - признаки, присущие предмету изобретения).

Известные способ и пирометр применимы для измерения температур 1000-2000oС, когда отраженное от образца излучение фона пренебрежимо мало по сравнению с собственным излучением.

Известен способ бесконтактного измерения температуры (и пирометр на его основе) (см. Tingwaldt С. Р. , Magdeburg H., TMCSI, 1962, v.3, part 1, р. 483-486), заключающийся в измерении отношения двух ортогонально поляризованных компонент излучения поглощающей поверхности под углом 45o к ней. При этом выполняется соотношение Rq() = R2k(), где Rq() и Rk() - коэффициенты отражения ортогонально поляризованных компонент теплового излучения при углах визирования q= 45o и k= 90o соответственно, что позволяет определить (рассчитать) температуру поверхности.

В данном способе, как и в предыдущем, используется видимый диапазон спектра, в котором анализируемые объекты (например, металлы) непрозрачны и дают достаточно яркое излучение, по сравнению с которым отраженное поверхностью излучение фона пренебрежимо мало. Кроме того, при углах визирования, отличающихся от 45o, нарушается приведенное выше соотношение и, соответственно, оказывается невозможным расчет температуры поверхности.

В диапазоне температур поверхности объектов 0650oС, которые используются в технологических установках осаждения и эпитаксии, видимые диапазоны излучений неприменимы из-за недостаточной яркости излучения, а в среднем инфракрасном диапазоне излучение фона (конструкции оборудования, стенок реактора), отраженное поверхностью объекта, сопоставимо с собственным излучением объекта и вносит существенную погрешность в измерения.

Известен способ дистанционного измерения температуры поверхности объектов (и пирометр на его основе) (см. Гордов А.Н., Жугалло О.М., Иванова А.Г. Основы температурных измерений. - М.: Наука, 1992, с.232-243), состоящий в "приеме излучения объекта оптической системой" пирометра, "спектральной фильтрации этого излучения" и модуляции, включающей последовательную коммутацию на датчик (детектор, приемник излучений) с заданной частотой двух потоков излучения - от объекта и эталонного источника, преобразовании в электрический сигнал, его усилении и выделении в этом сигнале переменной составляющей, пропорциональной разности коммутируемых сигналов, "по величине (интенсивности) этого сигнала" и известным характеристикам эталонного излучения "определяется" условная "температура объекта", а истинная температура находится по известной калибровочной зависимости с учетом независимо измеренной температуры стенок реактора или конструктивных элементов технологического оборудования. (Выделенное кавычками - признаки, присущие предмету изобретения).

Недостатком известного способа и пирометра является необходимость применения эталонного источника теплового излучения, что существенно увеличивает аппаратурную избыточность пирометра, повышает его габаритно-весовые и энергетический показатели, усложняет эксплуатацию.

Известны как более близкие по технической сущности к предмету изобретения способ бесконтактного измерения температуры и пирометр на его основе (см. патент RU 2149366, кл. G 01 J 5/58, Н 01 L 21/66, б. 14, 2000 г.), использующий "прием теплового излучения объекта, спектральную фильтрацию", его модуляцию, детектирование, усиление на частоте модуляции, выделение переменной составляющей, регистрацию излучения под углом к нормали к поверхности излучения, равным главному углу падения луча, и выделении в детектируемом сигнале разности ортогонально поляризованных компонент излучения, по которой "определяют температуру поверхности объекта".

Пирометр (по патенту RU 2149366, м.кл. G 01 J 5/58, H 01 L 21/66, б. 14, 2000 г.) содержит "вход" (канал из прозрачного в рабочем спектральном диапазоне материала) "оптической связи объекта с пирометром", полосовой фильтр, поляризатор, объектив, диафрагму, "датчик (детектор) теплового излучения" и блок регистрации. (Выделенное кавычками - признаки, общие с предметом изобретения).

Недостатки известных способа и пирометра - необходимость поляризации излучения, его модуляции и детектирования, значительная алгоритмическая сложность определения температуры и, как результат, значительная аппаратурная избыточность, низкая надежность в работе и значительная эксплуатационная сложность.

Кроме того, известные способы бесконтактного измерения температуры и пирометры обладают общим недостатком, состоящим в критичности к углам визирования, расстоянию от объекта до приемника излучений, неприменимостью для измерения температуры в широком, от сотен до десятков тысяч градусов по Цельсию, диапазоне температур.

Задача изобретения - расширение функциональных возможностей пирометра за счет обеспечения измерения температуры при нефиксированных углах визирования и нефиксированных расстояниях между объектом, температура поверхности которого измеряется, и датчиками пирометра.

Технический результат достигается тем, что в пирометр, содержащий вход, из прозрачного в рабочем спектральном диапазоне материала, оптической связи и датчик излучения нагретого тела, на оптической оси с входом, введены второй датчик на оптической оси с входом, причем датчики обеспечены селективными на двух разных длинах волн свойствами, первый и второй аналого-цифровые преобразователи (АЦП), соединенные информационными входами с выходами первого и второго датчиков соответственно, элемент сравнения, соединенный первыми и вторыми входами поразрядно с выходами первого и второго датчиков соответственно, первый и второй элементы ИЛИ, соединенные входами поразрядно с выходами первого и второго АЦП соответственно, группы первых, вторых, третьих и четвертых элементов И, причем группа первых элементов И первыми входами соединена поразрядно с выходами первого АЦП, а вторыми входами с первым выходом элемента сравнения, группа вторых элементов И первыми входами соединена поразрядно с выходами второго АЦП, а вторыми входами с третьим выходом элемента сравнения, группа третьих элементов И первыми входами соединена поразрядно с выходами первого АЦП, а вторыми входами с третьим выходом элемента сравнения, и группа четвертых элементов И первыми входами соединена поразрядно с выходами второго АЦП, а вторыми входами с первым выходом элемента сравнения, первый арифметический блок, соединенный поразрядно первыми входами с выходами групп первых и четвертых элементов И, а вторыми входами поразрядно с выходами групп вторых и третьих элементов И, группа пятых элементов И, соединенных первыми входами с выходом первого элемента ИЛИ, вторыми входами с выходом второго элемента ИЛИ, а третьими входами поразрядно с выходами первого арифметического блока, задатчик коэффициента пропорциональности, второй арифметический блок, соединенный первыми и вторыми входами поразрядно с выходами группы пятых элементов И и задатчика соответственно, а выходами поразрядно с группой первых (информационных) выходов устройства, третий элемент ИЛИ, соединенный входами поразрядно с выходами второго арифметического блока, формирователь переднего фронта импульса, соединенный входом с выходом третьего элемента ИЛИ, а выходом со входами управления первого и второго АЦП, и шестой элемент И, соединенный первым и вторым входами с выходами первого и второго элементов ИЛИ, а выходом со вторым выходом пирометра.

Схема пирометра приведена на чертеже.

Пирометр содержит вход 1 теплового излучения, первый 2 и второй 3 датчики уровня (мощности) теплового излучения на длинах волн 1 и 2 соответственно, первый 4 и второй 5 аналого-цифровые преобразователи (АЦП), соединенные информационными входами с выходами датчиков 2 и 3 соответственно, элемент сравнения 6, соединенный первыми и вторыми входами поразрядно с выходами первого 4 и второго 5 АЦП соответственно, первый 7 и второй 8 элементы ИЛИ, соединенные входами с выходами первого 4 и второго 5 АЦП соответственно, группу первых 9, вторых 10, третьих 11 и четвертых 12 элементов И, первые входы группы первых 9 и группы третьих 11 элементов И поразрядно соединены с выходами АЦП 4, первые входы группы вторых 10 и группы четвертых 12 элементов И поразрядно соединены с выходами АЦП 5, вторые входы групп 9 и 12 элементов И соединены с первым выходом элемента 6 сравнения, вторые входы групп 10 и 11 элементов И соединены с третьим выходом элемента 6 сравнения, первый 13 арифметический блок, соединенный поразрядно первыми входами с выходами первых 9 и четвертых 12 элементов И, а его вторые входы поразрядно соединены с выходами групп вторых 10 и третьих 11 элементов И, группу пятых 14 элементов И, соединенных первыми входами с выходом первого 7 элемента ИЛИ, вторыми входами с выходом второго 8 элемента ИЛИ, а третьими входами поразрядно с выходами первого 13 арифметического блока, задатчик 15 коэффициента пропорциональности, второй 16 арифметический блок, соединенный поразрядно первыми и вторыми входами с выходами группы пятых 14 элементов И и задатчика 15 соответственно, а выходами с группой первых 17 выходов пирометра, третий 18 элемент ИЛИ, соединенный входами с выходами второго 16 арифметического блока, формирователь 19 переднего фронта импульса, соединенный входом с выходом третьего 18 элемента ИЛИ, а выходом со входами управления АЦП 4 и 5, и шестой 20 элемент И, соединенный входами с выходами первого 7 и второго 8 элементов ИЛИ, а выходом со вторым выходом пирометра.

Пирометр работает следующим образом.

Задатчиком 15 устанавливается код значения коэффициента q пропорциональности, зависящего от значений длин волн 1 и 2 по q = |1-2|, где - постоянный коэффициент размерности, вход 1 теплового излучения устанавливается в направлении на объект О, температура поверхности которого подлежит измерению, при этом на датчики 2 и 3 по входу 1 поступает излучение с поверхности объекта О. Датчики 2 и 3, обладая избирательностью на излучения с 1 и 2 соответственно, на своих выходах генерируют аналоговые сигналы U2 = f(1) и U3 = f(2), а АЦП 4 и 5 преобразуют аналоговые сигналы U2 и U3 в цифровые коды N4=f(U2) и N5=f(U3) соответственно. По результатам сравнения кодов N4 и N5 на первом выходе элемента 6 сравнения генерируется единичный потенциал при N4>N5, на втором выходе элемента 6 сравнения генерируется высокий потенциал при N4=N5, а на третьем выходе генерируется единичный (высокий) потенциал при N4<N. На выходах элементов 7 и 8 ИЛИ устанавливаются высокие (единичные) потенциалы тогда и только тогда, когда N4>0 и N5>0. Высоким (единичным) потенциалом с первого выхода элемента 6 сравнения по вторым входам открываются группы 9 и 12 элементов И, а высоким (единичным) потенциалом с третьего выхода элемента 6 сравнения по вторым входам открываются группы 10 и 11 элементов И, при этом содержимое выходов АЦП 4 (N4) и АЦП 5 (N5) поступает на первые и вторые или на вторые и первые соответственно входы первого 13 арифметического блока, который определяет коды значений N13=N4/N5 или N13=N5/N4, что однозначно соответствует N13 = 1/2 или N13 = 2/1. Код N13 поступает на третьи входы группы 14 элементов И, которые открываются при единичных потенциалах на первых и вторых их входах. Содержимое выходов первого 13 арифметического блока 13 через группу 14 элементов И поступает на первые входы второго 16 арифметического блока, на вторые входы которого поступает код N15 значения коэффициента q пропорциональности (N15 = |N1-N2|), при этом на выходах арифметического блока 16 генерируется код N16, пропорциональный N16 = N13N15 = |1-2|1/2 или = |1-2|2/1 в градусах К. Этот код поступает на выходы 17 пирометра и может индицироваться дисплеем или использоваться в технологических нуждах для управления технологическим процессом. Кроме того, содержимое выходов арифметического блока 16 N16 через третий 18 элемент ИЛИ поступает на формирователь 19 переднего фронта импульса, коротким импульсом высокого потенциала с выхода формирователя 19 повторно запрашиваются АЦП 4 и АЦП 5, что обеспечивает синхронизацию во времени отсчетов значений N16 T в градусах К, кроме того, элемент И 20 на своем выходе генерирует высокий потенциал при N4>0 и N5>0, т.е. когда чувствительность датчиков 2 и 3 и мощность падающих на них тепловых излучений от объекта О достаточны для измерения температуры объекта О, этот сигнал с выхода элемента И 20 поступает на выход 21 пирометра и может служить признаком приемлемой наводки оптического входа 1 пирометра на объект О, т.е. при периодическом появлении сигнала на выходе 21 оба датчика (2 и 3) реагируют на тепловое излучение объекта О и пирометр способен (или готов) к выполнению функционального назначения.

Известно, что лучеиспускательная способность нагретого тела ET при температуре Т по закону Кирхгофа определяется из ET = ATT, где AT - его поглощательная способность, а T - величина постоянная при данной температуре для все тел; мощность излучения по закону Стефана-Больцмана определяется из = T4, где - постоянная Больцмана; наибольшая излучательная способность приходится на определенную длину волны max, для которой по закону смещения Вина справедливо соотношение maxT = d, где d - постоянная величина; и излучательная способность тела определяется по формуле Планка, как, где с - скорость света в вакууме, - длина волны, k - постоянная Больцмана, h - постоянная Планка, a b - коэффициент пропорциональности. Тогда, поскольку значения T не зависят ни от угла визирования, ни от расстояния от объекта до приемника излучений, в пределах чувствительности приемников, показания пирометра остаются справедливыми и стабильными в широком диапазоне углов визирования и расстояний между объектом и приемниками излучений. Кроме расширения функциональных возможностей пирометр (устройство для бесконтактного измерения температуры) за счет использования фотоэлектрических преобразователей тепловых излучений в электрические сигналы обеспечивает исключение субъективизма, а за счет цифровой обработки информации - повышение точности измерений и возможность его использования в автоматических средствах сбора информации о состоянии объектов в широком диапазоне их динамичности по параметру температуры, а также в автоматических дистанционных средствах управления (регулирования) технологическими процессами. А если еще учесть возможность использования в качестве рабочих длин волн их ультрафиолетовые и инфракрасные области, то область применения пирометра по температурному диапазону простирается от 300400 К до 1000015000 К.

Формула изобретения

Пирометр, содержащий вход, из прозрачного в рабочем спектральном диапазоне материала, оптической связи и датчик излучения нагретого тела, на оптической оси с входом, отличающийся тем, что в него введены второй датчик на оптической оси с входом, причем датчики обеспечены селективными на двух разных длинах волн свойствами, первый и второй аналого-цифровые преобразователи (АЦП), соединенные информационными входами с выходами первого и второго датчиков соответственно, элемент сравнения, соединенный первыми и вторыми входами поразрядно с выходами первого и второго датчиков соответственно, первый и второй элементы ИЛИ, соединенные входами поразрядно с выходами первого и второго АЦП соответственно, группы первых, вторых, третьих и четвертых элементов И, причем группа первых элементов И первыми входами соединена поразрядно с выходами первого АЦП, а вторыми входами с первым выходом элемента сравнения, группа вторых элементов И первыми входами соединена поразрядно с выходами второго АЦП, а вторыми входами с третьим выходом элемента сравнения, группа третьих элементов И первыми входами соединена поразрядно с выходами первого АЦП, а вторыми входами с третьим выходом элемента сравнения, и группа четвертых элементов И первыми входами соединена поразрядно с выходами второго АЦП, а вторыми входами с первым выходом элемента сравнения, первый арифметический блок, соединенный поразрядно первыми входами с выходами групп первых и четвертых элементов И, а вторыми входами поразрядно с выходами второй и третьей групп элементов И, группа пятых элементов И, соединенных первыми входами с выходом первого элемента ИЛИ, вторыми входами с выходом второго элемента ИЛИ, а третьими входами поразрядно с выходами первого арифметического блока, задатчик коэффициента пропорциональности, второй арифметический блок, соединенный первыми и вторыми входами поразрядно с выходами группы пятых элементов И и задатчика соответственно, а выходами поразрядно с группой первых (информационных) выходов устройства, третий элемент ИЛИ, соединенный входами поразрядно с выходами второго арифметического блока, формирователь переднего фронта импульса, соединенный входом с выходом третьего элемента ИЛИ, а выходом со входами управления первого и второго АЦП, и шестой элемент И, соединенный первым и вторым входами с выходами первого и второго элементов ИЛИ, а выходом со вторым выходом устройства.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике, а именно к энергетической фотометрии, и может найти применение при разработке, производстве и эксплуатации сверхъярких источников излучения - мощных электрических дуг, лазеров

Изобретение относится к технике измерения интенсивности электромагнитного излучения, в частности к технике измерения на основе поглощения электромагнитной энергии и объемного расширения твердых тел

Изобретение относится к физической оптике и может быть использовано для измерения температуры поверхности пластин монокристаллов, в частности монокристаллического кремния

Изобретение относится к области термометрии , в частности к способам измерения температуры с помощью изооптических термодатчиков, Целью изобретения является повышение чувствительности устройств для измерения температуры

Изобретение относится к области оптической и радиоспектроскопии

Изобретение относится к области температурных Измерений и может быть использовано для дистанционного иэмерения и регулирования температуры газообразных, жидких и твердых сред как в обычных, так и в особо опасных условиях

Пирометр // 2270984
Изобретение относится к измерительной технике

Изобретение относится к технике оптических измерений

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике и может быть использовано для измерений энергии оптических импульсов

Изобретение относится к оптическому приборостроению

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины, содержащего поглотитель, измеряют спектр излучения от слоя газа заданной толщины. Парциальное давление поглотителя измеряют по меньшей мере в двух сечениях слоя газа заданной толщины в направлении линии измерения спектра излучения. По усредненному значению парциального давления судят о распределении поглотителя в слое газа заданной толщины. Вычисляют зависимость волнового числа поглотителя W в слое газа заданной толщины от температуры газа W=f(T). Среднюю температуру слоя газа заданной толщины определяют по точке пересечения линии, отображающей зависимость волнового числа поглотителя в слое газа заданной толщины от температуры газа в системе координат mV и Т, с линией, полученной по результатам измерения спектра излучения от слоя газа заданной толщины в системе координат mV и Т. Технический результат - повышение точности определения средней температуры слоя газа заданной толщины. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения в двух вариантах исполнения. В первом варианте приемник-преобразователь выполнен в виде трех взаимно перпендикулярных круговых панелей с точкой пересечения, совпадающей с их геометрическими центрами; каждая круговая панель с двух сторон представляет приемную плоскость, на которой установлены фотоэлектрические преобразователи. Тыльные контакты фотоэлектрических преобразователей охлаждаются радиальными прямолинейными, дугообразными и периферийными дугообразными тепловыми трубами. Второй вариант отличается от первого конструкцией тепловых труб: применяются V-образные и дугообразные тепловые трубы. Техническим результатом является повышение мощности и эффективности приемника-преобразователя, повышение КПД преобразования, надежности и ресурса работы. 2 н.п. ф-лы, 19 ил.

Изобретение относится к области океанологии и может быть использовано для получения полей температуры океана в оперативном режиме. Заявлен способ оценки температуры поверхности океана по измерениям спутниковых микроволновых радиометров путем получения значений радиояркостных температур (Тя) по радиометрическим каналам и вычисления значения температуры поверхности океана (Ts) с использованием зависимости, учитывающей значение радиояркостных температур и коэффициентов настроенной Нейронной Сети. Используются четыре радиометрических канала, которые имеют следующие частоты и поляризационные режимы: υ1=6.9 ГГц горизонтальной поляризации, υ2=6.9 ГГц вертикальной поляризации, υ3=10.65 ГГц горизонтальной поляризации и υ4=10.65 ГГц вертикальной поляризации. Моделируется ослабление излучения слоем осадков до 30 мм/ч, что позволяет получать оценки температуры поверхности океана в широком диапазоне состояний океана и атмосферы для всего диапазона температур океана в условиях, включающих наличие мощной облачности и осадков до 30 мм/ч. Технический результат - повышение точности и достоверности получаемых данных.

Изобретение относится к области дистанционного измерения температур и касается способа измерения температуры потока газа с поглотителем. Измерение температуры проводят в, по крайней мере, трех слоях заданной толщины. При осуществлении способа производят юстировку оптической системы для одного из средних слоев газа. Измеряют парциальное давление в каждом слое газа и определяют содержание поглотителя в потоке газа. Перемещают источник излучения вдоль линии визирования и измеряют величину изменения сигнала в зависимости от расфокусировки оптической системы. Определяют для каждого слоя газа характеристику спектра излучения потока газа. Определяют величину изменения сигнала источника излучения при прохождении его к приемнику излучения через поток газа. По полученным величинам изменения сигнала вычисляют поправочный коэффициент для каждого слоя газа. Для каждого слоя газа вычисляют зависимость значений волнового числа поглотителя от температуры газа. Температуру в каждом слое определяют с учетом поправочного коэффициента по точке пересечения линии, отображающей зависимость волнового числа поглотителя в этом слое от температуры газа с линией, полученной по результатам измерения спектра излучения, соответствующего этому слою газа. Технический результат заключается в обеспечении возможности получения информации о распределении температуры по всему сечению потока газа. 6 ил.

Изобретение относится к области метеорологии и может быть использовано для оценки интенсивности дождя над территориями океана, свободными ото льда. Сущность: получают значения радиояркостных температур по четырем радиометрическим каналам, имеющим частоты 6.9 ГГц горизонтальной поляризации и 6.9 ГГц вертикальной поляризации, 7.3 ГГц горизонтальной поляризации и 7.3 ГГц вертикальной поляризации, 10.65 ГГц горизонтальной поляризации и 10.65 ГГц вертикальной поляризации. Вычисляют интенсивность дождя с использованием зависимости, учитывающей разницу радиояркостных температур и коэффициенты настроенной Нейронной Сети. При этом численные значения упомянутых коэффициентов получают математическим моделированием уходящего излучения системы Океан - Атмосфера в условиях осадков и проведением численного эксперимента с использованием Нейронных Сетей в качестве оператора решения обратной задачи. Причем при моделировании излучения применяют уточненные модели ослабления микроволнового излучения молекулярными газами и жидкокапельной влагой в облаках и осадках, а также новую параметризацию излучения океана. Технический результат: повышение точности оценки, расширение диапазона условий применения.
Наверх