Способ электронно-лучевого переплава металлов и сплавов

 

Изобретение относится к области металлургии, конкретно к способам электронно-лучевого переплава металлов и сплавов. Способ включает порционное накопление расплава в верхней уширенной части сквозного кристаллизатора до достижения зеркалом ванны расплава уровня, превышающего место начала уширения на 0,05-0,12 диаметра слитка с последующими выдержкой расплава, вытягиванием и формированием слитка в нижней цилиндрической части кристаллизатора, устанавливая диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора в соответствии с выражением: Dd+60, где D - диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора, мм; d - диаметр слитка, формируемого в нижней цилиндрической части кристаллизатора, мм. Изобретение повышает качество слитка за счет улучшения условий рафинирования, исключения возможности попадания в металл короны в виде брызг и возгонов, а также улучшения боковой поверхности слитка. 2 табл., 1 ил.

Изобретение относится к области металлургии, конкретно к способам получения высококачественных слитков путем электронно-лучевой плавки (ЭЛЛ) в сквозном кристаллизаторе с вытягиванием.

Известен способ ЭЛП металлов, в частности ниобия, с порционным накоплением металла в сквозном цилиндрическом кристаллизаторе с последующими выдержкой, вытягиванием и формированием слитка в нем [1].

Недостатком данного способа является низкое качество поверхности слитка из-за трещин, надрывов, наплывов, образующихся вследствие прилипания металла к внутренней поверхности кристаллизатора.

Кроме того, при ЭЛП заготовок, содержащих значительное количество примесей, на стенке кристаллизатора выше уровня ванны образуется корона в виде брызг и возгонов. При вытягивании слитка корона затягивается вместе со слитком, ухудшая качество его боковой поверхности, или падает в ванну расплава, приводя к неоднородности слитка по химическому составу.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ ЭЛП металлов, преимущественно тантала, включающий накопление расплава и формирование слитка в сквозном кристаллизаторе с периодическим вытягиванием, при котором накопление расплава ведут в кристаллизаторе с верхней уширенной конической частью, причем диаметр зеркала ванны расплава в конической части кристаллизатора устанавливают больше диаметра слитка на величину 0,017-0,044 диаметра слитка, а уровень зеркала ванны расплава - на расстоянии 0,05-0,12 диаметра слитка выше от места уширения [2].

Указанный способ позволяет исключить вероятность попадания в расплав короны и существенно снизить количество и глубину дефектов поверхности слитков, например, при ЭЛП танталовой заготовки, полученной вакуумным дуговым переплавом (ВДП) из тантала натриетермического восстановления с суммарным содержанием примесей после ВДП не более 0,1 мас.%.

Недостатком данного способа является неоднородность по химическому составу и наличие значительных поверхностных дефектов слитков в случае использования при ЭЛП танталовой заготовки, полученной в ВДП или ЭЛП из чернового металла алюмино-кальциетермического восстановления, содержащей не менее 1 мас.% примесей, что связано с образованием по краю зеркала ванны расплава мощной короны, фрагменты которой при величине диаметра зеркала ванны расплава в уширении не более 1,044 диаметра слитка затягиваются в его тело.

Технической задачей, решаемой с помощью данного изобретения, является повышение качества слитка за счет улучшения его боковой поверхности и повышения однородности по химическому составу.

Решение поставленной задачи достигается тем, что проводят ЭЛП металлов и сплавов с накоплением и выдержкой расплава в верхней уширенной части сквозного кристаллизатора до достижения зеркалом ванны расплава уровня, превышающего место начала уширения на 0,05-0,12 диаметра слитка с последующими выдержкой расплава, вытягиванием и формированием слитка в нижней цилиндрической части кристаллизатора, устанавливая диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора в соответствии с выражением:

D>d+60,

где D - диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора, мм;

d - диаметр слитка, формируемого в нижней цилиндрической части кристаллизатора, мм.

На чертеже представлена схема кристаллизатора в процессе плавки. Способ осуществляется в водоохлаждаемом кристаллизаторе с нижней цилиндрической частью 1. Вверху в месте 2 начала уширения начинается верхняя уширенная часть 3 кристаллизатора, где в процессе плавки образуется корона 4. Высоту уровня h ванны расплава 5 поддерживают на расстоянии 0,05-0,12 диаметра слитка d выше от места начала уширения 2. Диаметр зеркала ванны расплава D в верхней уширенной части 1 кристаллизатора устанавливают в соответствии с выражением: Dd+60.

Проведенные заявителем эксперименты, результаты которых приведены в таблице 1, показывают, что при величине диаметра зеркала ванны расплава D при его выдержке в уширепии, превышающем диаметр слитка менее чем на 60 мм, т.е. при невыполнении условия: Dd+60, на боковой поверхности слитков второго ЭЛЛ Nb и сплава Та-10%W (TaB 10) алюмино-кальциетермического восстановления отмечается большое количество дефектов и значительные колебания содержания примесных элементов из-за образования мощной короны на периферии ванны расплава при его выдержке в уширении и ее затягивания в тело слитка при вытягивании.

При соблюдении условия: Dd+60 поверхность слитков практически не содержит дефектов, а однородность по содержанию примесных элементов возрастает более чем в 2 раза.

Примером осуществления предлагаемого способа является получение слитка ниобия в электронно-лучевой печи типа ЭДП 0,7/500 мощностью 500 кВт. Параметры ЭЛП и результаты анализа качества слитков приведены в таблице 2.

В качестве переплавляемой заготовки использовали слиток Nb 1601000 мм, массой - 172 кг, полученный в ЭЛП из чернового металла алюмино-кальциетермического восстановления, который сплавляли в кристаллизатор, изображенный на рисунке, диаметр нижней цилиндрической части которого d=160 мм и верхней уширенной части - 260 мм, в которую порционно наплавляли расплав высотой h - 15 мм, при этом диаметр зеркала ванны расплава составлял: D=230 мм.

После выдержки расплава в уширенной части кристаллизатора в течение 420 с при мощности электронного луча 350 кВт (удельная мощность луча q=0,008 кВт/мм2 поверхности зеркала ванны расплава) производили вытягивание металла до начала уширения нижней цилиндрической части кристаллизатора. В таблице 2 также приведены данные по ЭЛП Nb по способу, предложенному в прототипе. В обоих случаях полученные слитки по химическому составу соответствовали требованиям ГОСТ 16099-80 на ниобий марки Нб-1, однако поверхность слитка, полученного по способу, предложенному в прототипе, содержала значительное количество фрагментов короны, тогда как поверхность слитка, полученного по предлагаемому способу, фрагментов короны не содержала.

Кроме того, относительное отклонение содержания примесных элементов от среднего значения, определенное на поперечных темплетах, в слитке, полученном по предлагаемому способу, значительно ниже, что свидетельствует о его большей однородности по сравнению со слитком, полученным по способу, изложенному в прототипе.

Результаты анализа качества слитков, полученных по предлагаемому способу и по способу, приведенному в прототипе, представленные в таблице 2, свидетельствуют о решении поставленной технической задачи и получении нового технического результата - создания способа электронно-лучевого переплава металлов и сплавов, преимущественно алюмино-кальциетермического восстановления, обеспечивающего получение высококачественных слитков при увеличении выхода в годное на 10,1% и повышение однородности по химическому составу более чем в 2 раза.

Предложенный способ может быть применен в промышленном производстве высококачественных слитков, предназначенных для изготовления изделий, в том числе для нужд ядерной энергетики и устройств, использующих явление сверхпроводимости.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Заборонок Г.Ф. и др. “Электронная плавка металлов”, М.: Металлургия, 1972 г., с.84.

2. Патент РФ 2027783, кл. С 22 В 9/22 “Способ электронно-лучевого переплава металлов”.

Формула изобретения

Способ электронно-лучевого переплава металлов и сплавов, включающий порционное накопление расплава в верхней уширенной части сквозного кристаллизатора до достижения зеркалом ванны расплава уровня, превышающего место начала уширения на 0,05-0,12 диаметра слитка с последующими выдержкой расплава, вытягиванием и формированием слитка в нижней цилиндрической части кристаллизатора, отличающийся тем, что диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора устанавливают в соответствии с выражением

Dd+60,

где D - диаметр зеркала ванны расплава при его выдержке в верхней уширенной части сквозного кристаллизатора, мм;

d - диаметр слитка, формируемого в нижней цилиндрической части кристаллизатора, мм.

РИСУНКИРисунок 1



 

Похожие патенты:

Изобретение относится к области черной и цветной металлургии, а точнее к легированию сталей, цветных металлов и сплавов в электроннолучевых печах

Изобретение относится к получению тугоплавких, металлических и неметаллических материалов, преимущественно специальных видов клинкера, имеющих высокую степень вязкости расплава и сопутствующих металлов и может быть использовано также в металлургии и химической технологии

Изобретение относится к электродуговым плазменным реакторам для одновременного получения расплавов тугоплавких металлических материалов и тугоплавких неметаллических материалов и возгонов и может быть использовано в строительной промышленности, конкретно производство цемента, химической промышленности и металлургии

Изобретение относится к области черной металлургии, в частности к литейному производству, и может быть использовано для литья любых металлов, включая тугоплавкие и химически активные

Изобретение относится к области металлургии тугоплавких металлов и сплавов, конкретно к способам получения слитков тантала с использованием танталовой шихты в виде отходов путем электронно-лучевого переплава

Изобретение относится к области специальной электрометаллургии и может быть использовано для получения высококачественных слитков из металлов и сплавов путем электронно-лучевого переплава

Изобретение относится к металлургии, а именно к плавке и литью тугоплавких реакционных металлов в гарнисажных печах преимущественно с плазменным или электронно-лучевым нагревом
Изобретение относится к области металлургии, в частности к производству углеродистого феррохрома из хромитового концентрата, чугуна из железосодержащих материалов

Изобретение относится к прогрессивной технологии производства марганцевых ферросплавов, а именно к плазменно-дуговому нагреву и плавлению шихтовых материалов

Изобретение относится к области металлургии, конкретно к способам получения ниобиевых слитков, характеризуемых высокой однородностью по химическому составу и механическим свойствам
Изобретение относится к металлургии редких тугоплавких металлов, а именно к металлургии ванадия, и может быть использовано для получения ванадия высокой чистоты для производства специальных сплавов на основе ванадия
Изобретение относится к области электрометаллургии и может быть использовано для получения слитков ниобия высокой чистоты, применяемых в физико-энергетических установках, работающих с использованием явления низкотемпературной сверхпроводимости

Изобретение относится к электродуговым плазменным реакторам для одновременного получения расплава тугоплавких, металлических и неметаллических материалов и возгонов, преимущественно специальных видов клинкеров искусственных вяжущих, имеющих высокую степень вязкости расплава, и сопутствующих цветных металлов и может быть использовано в цементной, химической промышленности и металлургии

Изобретение относится к области металлургии черных и цветных металлов и может быть использовано при выращивании монокристаллов и вакуумном рафинировании различных материалов с помощью электронно-лучевой зонной плавки

Изобретение относится к металлургии, в частности, к конструкции электродов для электродуговых плазменных реакторов-сепараторов для одновременного получения расплавов тугоплавких металлических материалов и тугоплавких неметаллических материалов и возгонов и может быть использовано в строительной промышленности, конкретно в производстве цемента, химической промышленности и металлургии

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов

Изобретение относится к области электрометаллургии и может быть использовано для нагрева, плавки, рафинирования и легирования черных и цветных металлов, для плавки шлаков и флюсов, а также для перемешивания их расплавов в миксерах, печах-ковшах и агрегатах комплексной доводки сплавов

Изобретение относится к спецэлектрометаллургии и может быть использовано для получения высококачественных слитков из жаропрочных сплавов на основе титана, легированных легкоплавкими элементами, например алюминий, олово, кремний

Изобретение относится к электродуговым плазменным печам для плавления неметаллических тугоплавких материалов, преимущественно для получения цементного клинкера, и может быть использовано в строительной промышленности
Наверх