Способ вертикального профилирования течений

Изобретение относится к области океанологии и может быть использовано для определения параметров мезомасштабной структуры течений в океане. Способ вертикального профилирования течений включает проведение в заданном районе измерений зондом-профилографом, по результатам которых определяют максимум частоты плавучести, глубину залегания слоя скачка плотности, профили меридиональной и широтной составляющих скорости течения, спектральные тензорные характеристики вертикальной структуры течений, горизонтальную длину волны слоя скачка плотности, угловую частоту волновых возмущений и направление ориентации главной оси спектрального тензорного инварианта скорости течения. В направлении главной оси спектрального тензорного инварианта скорости течения выполняется галс обеспечивающего судна с зондированием на ходу судна зондом гидрологическим до прохождения расстояния, равного 8:10 длинам волн слоя скачка плотности. Зондирование также проводится на ходу судна, движущегося в обратном направлении. Обработка материалов проводится во время проведения эксперимента. Технический результат: повышение достоверности определения характеристик течений в океане.

 

Данное изобретение относится к измерительной технике и может быть использовано для определения параметров мезомасштабной структуры в океане.

Известен «Способ определения параметров внутренних волн, входящих в суммарное волновое поле» (патент № 2192025 от 27 октября. Институт океанологии им. П.П.Ширшова, всего 5 листов ) [1], который позволяет определить параметры внутренних волн в широком диапазоне масштабов.

Принципиально этот способ решает задачу определения параметров мезомасштабной структуры в океане, но он предусматривает постановку автономных буйковых станций с измерителями скорости течения и направления вектора скорости течения на длительный срок (10-15 суток) и многократные измерения зондом гидрологическим весь это промежуток времени. Кроме того, необходимо проводить весьма трудоемкую обработку полученного экспериментального материала.

Известен «Способ определения параметров меандрирующих течений в океане» (патент № 2148828 от 10 мая 2000 г. Института океанологии им. П.П.Ширшова, всего 5 листов), который так же при небольшой коррекции методики его выполнения может быть использован для определения параметров мезомасштабной структуры в океане [2].

Но, необходимо отметить, что оба приведенных в качестве аналогов способа практически не могут быть применены на практике для определения параметров мезомасштабных внутренних волн, так как требуют очень большого количества дорогостоящего экспедиционного времени, использования в эксперименте большого количества океанологической измерительной техники и большого коллектива технического персонала, участвующего в проведении экспериментальных исследований.

Руководство по проведению океанографических работ рекомендует исследования проводить методом микрополигонов, при которых выставляются якорные буйковые станции по треугольнику с расстоянием между ними не более половины длины внутренних волн определенного периода. Однако перед началом исследований длины волн и направление их распространения (фронт волны) обычно неизвестны. Это приводит к тому, что очень часто результаты по определению параметров внутренних волн содержат ошибочные данные, а материалы наблюдений оказываются непригодными для детального анализа. Располагая данными о длинах волн, их периодах, направлении и скорости распространения, можно абсолютно правильно расположить буйковые станции [3].

Предлагаемый способ исследования параметров мезомасштабной структуры океана предусматривает значительное сокращение времени проведения экспериментальных наблюдений и использование всего двух измерительных приборов: зонда-профилографа и зонда гидрологического, а следовательно, значительного сокращения численности технического персонала, проводящего экспериментальные исследования. В результате проведенного эксперимента получаем не только качественные, но и количественные характеристики параметров мезомасштабной структуры в океане.

Сущность изобретения.

Целью изобретения является сокращение времени проведения эксперимента и повышение достоверности определения характеристик мезомасштабной структуры океана за счет осуществления вертикального профилирования течений и, по полученным результатам, определения галсов судна при измерении буксируемым гидрологическим зондом. Способ осуществляется следующим образом.

В заданном районе океана с обеспечивающего судна выполняют измерения гидрофизическим зондом-профилографом, по данным которых определяют максимум частоты плавучести Nm и соответствующую ему глубину hm скачка плотности, а так же профили меридиональной Vm и широтной Vp составляющих скорости течения. Выполняют ВКБ нормировку (приближение Вентцеля, Крамерса, Бриллюена при решении дифференциальных уравнений) профилей Vm и Vp и приращений глубины Δh по соотношениям:

где No - опорная частота плавучести.

Индекс * означает комплексно сопряженное число.

Целесообразно использовать значение No=3 цикл/ч = 5,23·10-3 рад/с [4]. Вычисляют спектры нормированных вертикальных волновых чисел профилей составляющих вектора скорости Vm* и Vp*, т.е. SVm(β)* и SVp(β)*, а так же коспектр СVmVp(β)*, путем предварительной интерполяции значений V*m.p на равномерную сетку нормированных глубин с шагом ΔZ.

ВКБ нормировка обеспечивает однородность амплитуд волновых возмущений и длин по вертикали. По этим данным рассчитывают главные оси спектральных тензорных инвариантов по соотношениям:

а также угол ϕ между направлением главной оси λ1 и исходной системой координат, в которой выполняется измерение составляющих Vm и Vp по соотношению.

По зависимостям λ1(β), λ2(β) и ϕ(β) определяют максимальные значения λ1m, λ2m, соответствующее волновое число βm и длину волны 1о=2 π β0-1 на глубине ho, соответствующей частоте плавучести No.

С обеспечивающего судна опускают буксируемый зонд гидрологический и начинают буксировать его, причем при буксировке производится зондирование вниз и вверх исследуемого слоя на максимальных скоростях подъема и опускания погружаемого устройства зонда гидрологического. Зонд гидрологический пересекает при движении вниз и вверх глубину hm, а галсы обеспечивающего судна ориентируют по направлению ϕ главной оси λ1m. При этом направление движения судна совпадает с направлением фазовой скорости распространения квазиинерционной внутренней волны, а многократные измерения зондом гидрологическим позволяют при обработке по методике, приведенной в работе [5], построить подробный гидрологический разрез с детализацией скачка плотности, где амплитуда сигнала максимальна. Вычисляют оценку горизонтальной длины волны l1x по соотношению

где f - параметр Кориолиса; k, l, β, и ω - проекции волнового вектора на оси X, Y, Z (волновые числа) и частота.

Длину галса буксировки lg определяют из условия: lg≈(8...10)l1x.

Измеряют длину волны lx по повторяющимся значениям температуры данных зонда гидрологического либо в результате статистической обработки рядов температуры, полученных при измерении зондом гидрологическим путем вычисления спектров St (К) и оценки длины волны, соответствующей максимуму St(K), где К - корреляции.

Предварительная оценка длины волны lx может быть также определена по соотношению

а точное значение угловой частоты волновых возмущений равно:

где lx - горизонтальная длина волны по данным буксируемого измерителя.

Другие параметры мезоструктуры определяются по следующим соотношениям:

Вертикальный поток энергии Pz равен:

Среднее значение квадрата вертикального сдвига горизонтальной скорости S2 равно:

Следовательно, модуль сдвига S при ω2≪N2 пропорционален величине N1,5. Располагая оценками S2 и N2, можно определить зависимость числа Ричарсона Ri от параметров стратификации и внутренних волн.

Разработанный способ оперативного определения параметров мезоструктуры в океане проверен в натурных условиях в Атлантическом океане. В эксперименте использовались измерительные приборы: зонд-профилограф и зонд гидрологический.

Порядок выполнения работ в соответствии с формулой изобретения состоит в том, что в заданном районе океана производились зондирования зондом-профилографом. Выполнялась оперативная обработка профилей скорости течений и плотности, в результате которой определялась глубина слоя скачка плотности и спектральные тензорные характеристики вертикальной структуры течений. По этим характеристикам оценивалась длина волны мезомасштабных возмущений и направление ориентации главной оси спектрального тензорного инварианта колебаний скорости течения по вертикали.

В направлении ориентации главной оси спектрального тензорного инварианта скорости течения выполнялось зондирование на максимальных скоростях подъема и опускания прибора на ходу судна зондом гидрологическим. При этом зондирование осуществлялось в пределах таких глубин, чтобы при обработке материала можно было получить детальный разрез слоя, включающего в себя скачок плотности. Длина галса определялась по данным вертикального зондирования профилографом таким образом, чтобы на галсе укладывалось 8-10 длин волн. При таком условии обеспечивается статистическая достоверность полученных оценок. После выполнения галса производили разворот на 180° и зондирование проводилось на ходу судна движущегося в обратном направлении. Обработка получаемого при проведении эксперимента проводилась в реальном масштабе времени.

Литература

1. Способ определения параметров внутренних волн, входящих в суммарное волновое поле. Патент № 2192025 от 27 октября 2002 г.

2. Способ определения параметров меандрирующих течений в океане. Патент № 2148828 от 10 мая 2000 г.

3. Руководство по гидрологическим работам в океанах и морях. Гидрометеоиздат, Ленинград. 1977, 725 стр.

4. Leaman K.D., Sanfopd T.B. Vertical energy propagation of inertial waves a vector spectral analysis of velocity profiles. J. Geoph. Res. 1975. Y.80. № 15, p.1975-1978.

5. Способ измерения гидрологическим зондом в слоях с большими градиентами измеряемых параметров. Патент № 2192026 от 27 октября 2002 г.

Способ вертикального профилирования течений, включающий проведение в заданном районе измерений зондом-профилографом, по результатам которых определяют максимум частоты плавучести, глубину залегания слоя скачка плотности, соответствующего максимуму частоты плавучести, профили меридиональной и широтной составляющих скорости течения, спектральные тензорные характеристики вертикальной структуры течений, горизонтальную длину волны слоя скачка плотности, угловую частоту волновых возмущений и направление ориентации главной оси спектрального тензорного инварианта скорости течения, причем в направлении главной оси спектрального тензорного инварианта скорости течения выполняется галс обеспечивающего судна с зондированием на ходу судна зондом гидрологическим до прохождения расстояния, равного 8÷10 длинам волн слоя скачка плотности, затем судно разворачивается на 180° и зондирование проводится на ходу судна, движущегося в обратном направлении, а обработка материалов проводится во время проведения эксперимента.



 

Похожие патенты:

Изобретение относится к геологии, включая поисковую геохимию на нефть, и может быть использовано для оценки перспективности территорий нефтематеринских пород на нефть и газ.

Изобретение относится к структурно-петрологическим способам поисков алмазоносных районов и кимберлитовых полей и может быть использовано при проведении прогнозных и поисковых работ на коренные источники алмазов.

Изобретение относится к устройствам для дистанционного измерения параметров водной среды, в частности для измерений температуры, гидростатического давления, удельной электропроводности, водородного показателя рН, окислительно-восстановительного потенциала, концентраций различных ионов водной среды в скважинах, и может быть использовано при проведении исследований в скважинах, содержащих смесь воды и жидких углеводородов (например, нефти).

Изобретение относится к геофизике и может быть использовано при оценке катастрофических явлений. .

Изобретение относится к геофизике и может быть использовано при прогнозировании параметров землетрясений. .
Изобретение относится к области защиты окружающей среды. .

Изобретение относится к области геофизики и может быть использовано в станциях радиоволнового обнаружения предвестников землетрясений систем прогнозирования землетрясений.

Изобретение относится к геодезии и может быть использовано в процессе кадастрового учета земель со сложным рельефом. .

Изобретение относится к геофизике и может быть использовано в процессе космического мониторинга природных сред для прогнозирования землетрясений. .

Изобретение относится к геофизике и может быть использовано при дистанционном мониторинге природных сред. .

Изобретение относится к геофизике и может быть использовано при космическом мониторинге природных сред для прогнозирования землетрясений

Изобретение относится к геофизике и может быть использовано для прогноза сейсмической активности Земли
Изобретение относится к области нефтяной промышленности, а более конкретно к группе способов поисков месторождений и залежей нефти и газа

Изобретение относится к разведочной геофизике и может быть использовано при поиске полезных ископаемых
Изобретение относится к области исследования земной поверхности, в частности, с помощью аэрокосмических снимков

Изобретение относится к мониторингу окружающей среды и может быть использовано при выявлении времени максимального поступления радионуклидов в окружающую среду
Изобретение относится к геофизике и может быть использовано при прогнозе катастрофических явлений

Изобретение относится к геологии и может быть использовано для масштабного прогноза площадного распространения и локализации месторождений различного генезиса и возраста металлических, неметаллических и горючих полезных ископаемых на Земле

Изобретение относится к геофизике и может быть использовано при дистанционном зондировании Земли
Наверх