Керамический материал и способ его изготовления

Изобретение относится к созданию керамического материала для тепловых регенеративных окислителей, не претерпевающего изменение объема во время тепловых циклов. Керамический материал изготовлен с использованием керамических компонентов, которые содержат, мас.%: от 5 до 20 по весу сподумена и от 40 до 95 других образующих керамику компонентов, содержащих 50-95 глины и 5-50 полевого шпата. Этот материал имеет пониженную усадку при обжиге и улучшенные физические свойства. 2 н. и 4 з.п. ф-лы.

 

Предпосылки к созданию изобретения

Настоящее изобретение имеет отношение к созданию керамического материала, а в частности материала, полезного в процессах массообмена, когда материал подвергается воздействию повторяющихся термодинамических (тепловых) циклов. Важным примером использования такого усовершенствованного материала являются тепловые регенеративные окислители (RTOs). Обычный материал при воздействии тепловых циклов претерпевает изменение объема во время тепловых циклов, что может приводить к ослаблению и даже к потере физической целостности, особенно при воздействии абразивных сил или статических сил от нагрузки материала в тепловом окислителе или в другой промышленной колонне. Поэтому материал со сниженной чувствительностью к изменениям размеров во время тепловых циклов имеет большую привлекательность.

Другой проблемой обычных керамических материалов является то, что они по своей природе имеют большие объемные изменения в ходе обжига. Такие материалы обычно получают за счет перемешивания подходящих образующих керамику исходных материалов, таких как глина, полевой шпат, тальк, волластонит, цирконовый песок и другие минералы. Затем из этой смеси получают формуемую смесь и формуют так называемый "сырец", который имеет форму (конфигурацию) желательного керамического изделия, но иные физические свойства, а затем преобразуют сырец в нужный материал при помощи обжига сырца при повышенной температуре. В ходе обжига компоненты взаимодействуют через комбинацию механизмов спекания твердого состояния, жидкой фазы и паровой фазы, в результате чего получают желательный керамический материал. Проблема состоит в том, что при обжиге фасонного сырца обычно происходят изменения объема, которые легко могут достигать 25-35%. Обжиг проводят в обжиговой печи, которая имеет ограниченный объем. Таким образом, печь позволяет производить объем керамического продукта, который составляет от 3/4 до 2/3 объема загруженного сырца, что делает процесс весьма неэффективным.

Например, JP 56109869 раскрывает смесь для изготовления керамического материала, содержащую 50-95% стекла (SiO2 68,5, Al2О3 19,8, Li2O 3,7, TiO2, 1,9, ZrO2 2,0 и Р2О5 1,2%), 3-30% каолиновой глины и 2-30% полевого шпата, которая обжигается при температуре 1100-1300°С.

В соответствии с настоящим изобретением предлагается состав керамики и процесс ее обжига, которые позволяют получать керамику с малыми объемными изменениями или с малым ухудшением физических свойств в результате воздействия тепловых циклов, а также уменьшить или исключить снижение производительности за счет снижения объема продукта в ходе обжига.

Сущность изобретения

В соответствии с настоящим изобретением предлагается керамический материал, полученный при помощи обжига сырца, отформованного из смеси, которая содержит от 5 до 20 вес.%, а также от 80 до 95 других образующих керамику компонентов, содержащих от 50 до 95 вес.% глины и от 5 до 50 вес.% полевого шпата, причем указанный материал имеет линейную усадку менее чем 2.5%, в сравнении с размерами до обжига.

Сподумен в данном материале содержит от 7,25 до 7,75 вес.% лития в пересчете на оксид лития.

В соответствии с настоящим изобретением предлагается также способ изготовления керамического материала, который включает в себя следующие операции:

а) формование из смеси, которая содержит от 5 до 20 вес.% сподумена и от 80 до 95 вес.% других образующих керамику компонентов, содержащих от 50 до 95 вес.% глины и от 5 до 50 вес.% полевого шпата, сырца, имеющего желательную форму (конфигурацию); и

b) обжиг сырца при температуре от 1100 до 1300°С до получения керамического материала (изделия, продукта);

причем образующие керамику компоненты выбирают таким образом, чтобы после обжига линейные размеры сырца не уменьшались более чем на 2,5%.

Сподумен представляет собой встречающийся в природе минерал, который образован из смеси алюминосиликатов лития и натрия, причем двумя обычными минералами являются "кунцит" и "гидденит", имеющие родовое название "трифзан". Предпочтительным основным минералом является алюминосиликат лития, имеющий содержание лития в минерале, измеренное как оксид лития, в диапазоне ориентировочно от 7,25 и 7,75% по весу.

Глины в общем представляют собой смеси оксида алюминия и диоксида кремния и включают в себя такие материалы, как каолин, комовая глина, огнеупорная глина и т.п. Предпочтительными глинами являются высокопластичные глины, такие как комовая глина и огнеупорная глина. Особенно предпочтительные глины содержат метиленовый синий индекс ("MBI"), в количестве ориентировочно от 11 до 13 meq/100 г.

Метиленовый индекс является показателем поглощения глиной синего метиленового красителя и измеряется стандартным методом для синего метиленового индекса глин С837-99 (2003).

Термин "полевой шпат" используют здесь для обозначения силикатов оксида алюминия с содой, поташом и известью.

Другие компоненты, такие как кварц, цирконовый песок, полевошпатовая глина, монтмориллонит, нефелин сиенит и т.п., также могут присутствовать в небольших количествах в других образующих керамику компонентах составов в соответствии с настоящим изобретением, при условии, что результирующие составы отвечают установленным выше требованиям к изменению размеров.

Компоненты, которые обжигают совместно для получения керамических продуктов в соответствии с настоящим изобретением, преимущественно вводят в смесь в виде мелких порошков и формуют смесь при добавлении воды и/или экструзионных добавок. Придание формы можно производить за счет формования, однако экономические соображения заставляют использовать начальный экструзионный процесс с последующим разрезанием экструдата перпендикулярно к направлению экструзии на куски желательной длины.

Обожженный керамический материал имеет кажущуюся открытую пористость, составляющую менее чем 8% по объему, а преимущественно менее чем 4% по объему. Количество поглощенной воды составляет менее чем 4% по весу, а преимущественно менее чем 2% по весу.

Процесс, в соответствии с которым может быть изготовлен керамический материал, включает в себя перемешивание компонентов со средой перемешивания, такой как вода, и получение из смеси сырца желательной формы, например, за счет экструзии или формования, после чего проводят сушку сырца при температуре, достаточной для удаления связанной воды, в течение времени, преимущественно составляющего несколько часов. Это необходимо для того, чтобы избежать разрушения слабой структуры сырца, причем сушку обычно проводят при температуре ниже ориентировочно 120°С, а часто ниже ориентировочно 70°С, в течение времени около 5 часов. Высушенный сырец затем обжигают при повышенной температуре, например, от 1100 до 1300°С, до которой доходят постепенно в течение времени ориентировочно от 3 до 20 часов, и обычно выдерживают в течение времени от 1 до 5 часов, ранее постепенного охлаждения до окружающей температуры.

Керамический материал в соответствии с настоящим изобретением может иметь вид монолитов с множеством сквозных отверстий, однако этот материал преимущественно имеет вид случайных упаковок, имеющих форму колец, цилиндров, сфер, гранул и т.п. Изделия такой формы помещают в теплообменник случайным образом (навалом), столько, сколько может вместить имеющееся пространство.

Керамический материал в соответствии с настоящим изобретением имеет дополнительное неожиданное преимущество, связанное с тем, что он обычно теряет менее чем 10% сопротивления раздавливанию, а преимущественно менее чем 5% сопротивления раздавливанию, после проведения температурного цикла 800°С. В действительности часто такой керамический материал кажется даже увеличивающим свое сопротивление раздавливанию.

Описание предпочтительных вариантов настоящего изобретения

Далее изобретение будет описано со ссылкой на следующие Примеры, которые служат только для пояснения настоящего изобретения и не имеют ограничительного характера. В Примерах были использованы следующие материалы:

Глины:

Комовая глина, которая поставляется фирмой Unimin Co. или К.Т.Clay Co., как "высокопластичная" глина. В любом случае она содержит метиленовый синий индекс (MBI) в количестве около 11-13 meq/100 г. Глина имеет вид порошка с частицами, 90% по весу которых мельче 10 мкм.

Огнеупорная глина, которая поставляется фирмой Cedar Heights Clay Co. Она содержит MBI в количестве ориентировочно от 7 до 8 meq/100 г и имеет размер частиц в диапазоне от 0.5 мкм до 20 мкм, со средним размером частиц ориентировочно от 3 до 4 мкм.

Сподумен:

Концентрат сподумена поставляется фирмой Gwalia Co. или Tantalum Mining Co., в виде порошка, имеющего размер частиц в диапазоне ориентировочно от 20 до 200 мкм, со средним размером частиц ориентировочно от 85 до 95 мкм, и с содержанием лития, измеренным как оксид лития, составляющим от 7,25 до 7,75% по весу.

Другие минералы:

Полевой шпат

a) 30 меш, обработанная фракция с размером частиц по меньшей мере на 10% крупнее, чем 40 меш, и по меньшей мере на 70% крупнее, чем 100 меш. Полное содержание натрия и калия, измеренное по содержанию их оксидов, составляет по меньшей мере 10% по весу;

b) 200 меш натриевый полевой шпат, в котором содержание оксида натрия составляет 6.5% по весу, а содержание оксида калия составляет около 4.1% по весу;

c) полевошпатовый конгломерат;

d) нефелин сиенит.

Пример 1

Три партии керамических порошков были приготовлены из смеси порошков 30 меш огнеупорной глины, 20 меш полевого шпата и сподумена. Первая партия, которую в этом Примере назвали "стандартной", содержит 408 г огнеупорной глины (60 вес.%) и 272 г полевого шпата (40 вес.%). Вторая партия, которая имеет 11.8% сподумена, содержит 408 г огнеупорной глины (60 вес.%), 192 г полевого шпата (28.2 вес.%) и 80 г сподумена (11.8 вес.%). Третья партия, которая имеет 17.6% сподумена, содержит 408 г огнеупорной глины (60 вес.%), 152 г полевого шпата (22.4 вес.%) и 120 г сподумена (17.6 вес.%).

Компоненты каждой партии перемешивали вместе в скоростной мешалке в течение 1 минуты. Затем добавляли 120 г деионизированной воды (17.65 вес.% в пересчете на сухой вес) и перемешивание продолжали до получения однородной консистенции. Затем каждую партию смеси подавали в лабораторный одношнековый экструдер и экструдировали через прямоугольную головку экструдера со сторонами поперечного сечения 16.5 мм и 13.5 мм. Экструдированный сырец каждой партии разрезали перпендикулярно направлению экструзии на куски длиной 25 мм. После этого проводили полную сушку полученных кусков сырца и для каждого куска измеряли более длинную сторону поперечного сечения. Затем образцы подвергали обжигу, при этом температуру повышали со скоростью 3°С в минуту до максимальной температуры 1170°С, с выдержкой при 1170°С в течение 2 часов. После обжига вновь измеряли размер указанной более длинной стороны и вычисляли линейную усадку. Для стандартной партии, партии с 11.8% сподумена и партии с 17.6% сподумена получили соответственно 2.35, 2.71 и 2.44 процента линейной усадки. Затем в соответствии со стандартом ASTM С-373 определяли процент поглощения воды, который для стандартной партии, партии с 11.8% сподумена и партии с 17.6% сподумена составил соответственно 6.03, 2.37, и 1.63 процента. Это показывает, что при ориентировочно такой же линейной усадке добавка сподумена может снизить процент поглощения воды.

Несколько обожженных образцов были подвергнуты термическим ударам за счет нагревания до 700°С и быстрого охлаждения в 19 литрах воды при комнатной температуре. Измеряли сопротивление раздавливанию образцов, подвергнутых термическим ударам, и сравнивали с сопротивлением раздавливанию для образцов, не подвергнутых термическим ударам, для каждого испытуемого состава. Срезы (перпендикулярные к направлению экструзии) кусков длиной 25 мм подвергали механической обработке, чтобы добиться их плоскостности. Затем измеряли сопротивление раздавливанию в направлении экструзии индивидуальных образцов, закрепленных в сферическом седле из нитрида кремния, с использованием машины марки "Инстрон" с предельной нагрузкой 10,000 кг, причем образец помещали между параллельными стальными плитами и плиты сводили со скоростью 25 мм/мин. При разрушении образца показания машины "Инстрон" резко падали. Максимальное показание соответствует сопротивлению раздавливанию. Среднее сопротивление раздавливанию для образцов стандартной партии, партии с 11.8% сподумена и партии с 17.6% сподумена, которые не проходили закалку, составляет соответственно 167 МПа, 254 МПа и 272 МПа. Среднее сопротивление раздавливанию для образцов стандартной партии, партии с 11.8% сподумена и партии с 17.6% сподумена, которые проходили закалку, составляет соответственно 137, 215 и 256 МПа. Это отображает удержание сопротивления раздавливанию для образцов стандартной партии, партии с 11.8% сподумена и партии с 17.6% сподумена, составляющее соответственно 82, 85 и 94%.

Пример 2

Три партии керамических порошков были приготовлены из смеси порошков 30 меш огнеупорной глины, 20 меш полевого шпата и сподумена. Первая партия, которую в этом Примере назвали "стандартной", содержит 408 г огнеупорной глины (60 вес.%) и 272 г полевого шпата (40 вес.%). Вторая партия, которая имеет 5% сподумена, содержит также 387.6 г огнеупорной глины 30 меш (57 вес.%), 258.4 г полевого шпата (38 вес.%) и 34 г сподумена (5 вес.%). Третья партия, которая имеет 20% сподумена, содержит также 326.4 г огнеупорной глины 30 меш (48 вес.%), 217.6 г полевого шпата (32 вес.%) и 136 г сподумена (20 вес.%).

Компоненты стандартной партии перемешивали вместе в скоростной мешалке в течение 1 минуты. Затем добавляли 120 г деионизированной воды (17.65 вес.% в пересчете на сухой вес) и перемешивание продолжали до получения однородной консистенции. Для партий с 5% сподумена и с 20% сподумена, огнеупорную глину и полевой шпат перемешивали вместе в скоростной мешалке в течение 1 минуты. Сподумен был предварительно диспергирован в воде с использованием скоростной мешалки. Затем раствор сподумена был добавлен к другим компонентам в мешалке, и перемешивание продолжали на высокой скорости до получения однородной консистенции.

Затем каждую партию смеси подавали в лабораторный одношнековый экструдер и экструдировали через прямоугольную головку экструдера со сторонами поперечного сечения 16.5 мм и 13.5 мм. Экструдированный сырец каждой партии разрезали перпендикулярно направлению экструзии на куски длиной 25 мм. После этого проводили полную сушку полученных кусков сырца и для каждого куска измеряли более длинную сторону поперечного сечения. Затем (5×3) образцов каждой партии подвергали обжигу, при этом температуру повышали со скоростью 3°С в минуту до одной из максимальных температур 1140°С, 1170°С и 1200°С, с выдержкой при максимальной температуре в течение 2 часов. После обжига вновь измеряли размер указанной более длинной стороны и вычисляли линейную усадку. Для стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1140°С, получили соответственно 3.72, 4.35 и 3.99 процента линейной усадки. Для стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1170°С, получили соответственно 4.13, 4.01 и 2.60 процента линейной усадки. Для стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1200°С, получили соответственно 4.27, 4.18 процента линейной усадки и - 3.46 процента линейного расширения. Это показывает, что в партии с 20% предварительно диспергированного сподумена линейная усадка уменьшается в случае обжига при 1170°С и 1200°С по сравнению со стандартной партией.

Затем определяли процент поглощения воды, который для образцов стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1140°С, составил соответственно 4.97, 3.34 и 0.12 процента. Процент поглощения воды для образцов стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1170°С, составил соответственно 3.47, 0.81 и 0.03 процента. Процент поглощения воды для образцов стандартной партии, партии с 5% сподумена и партии с 20% сподумена, прошедших обжиг при 1200°С, составил соответственно 2.63, 0.02 и 0.23 процента. Это показывает, что добавка 5% и 20% предварительно диспергированного сподумена снижает процент поглощения воды для образцов, прошедших обжиг при 1140°С, 1170°С и 1200°С, по сравнению со стандартной партией.

Это исследование показывает, что за счет добавки 5 вес.% предварительно диспергированного сподумена можно получить образцы с линейной усадкой от 4.0% до 4.5%. Это исследование также показывает, что можно получить процент поглощения воды для указанных образцов от 3.34% для обжига при 1140°С до 0.81% для обжига при 1170°С и до 0.02% для обжига при 1200°С.

Это исследование показывает, что за счет добавки 20 вес.% предварительно диспергированного сподумена можно получить процент поглощения воды для соответствующих образцов, составляющий менее чем 0.25%. Это исследование также показывает, что можно получить образцы с линейной усадкой от 3.99% для обжига при 1140°С до 2.60% для обжига при 1170°С, и с линейным расширением - 3.46% для обжига при 1200°С.

1. Керамический материал, полученный при помощи обжига сырца, отформованного из смеси, которая содержит от 5 до 20 вес.% сподумена и от 80 до 95 вес.% других образующих керамику компонентов, которые содержат от 50 до 95 вес.% глины и от 5 до 50 вес.% полевого шпата, причем указанный материал имеет линейную усадку при обжиге с температурой от 1100 до 1300°С менее чем 2,5%, в сравнении с размерами сырца до прохождения обжига.

2. Керамический материал по п.1, отличающийся тем, что глина имеет метиленовый синий индекс MBI от 11 до 13 meq/100 г.

3. Керамический материал по п. 1, у которого сподумен содержит от 7,25 до 7,75 вес.% лития, измеренного как оксид лития.

4. Керамический материал по любому из пп.1-3, отличающийся тем, что процент удержания сопротивления раздавливанию составляет по меньшей мере 85%, а преимущественно по меньшей мере 98%, от термических ударов, прикладываемых при помощи термообработки с использованием резкого падения температуры на величину от 400 до 800°С.

5. Способ изготовления керамического материала, который предусматривает

a) формование из смеси, которая содержит от 5 до 20 вес.% сподумена и от 80 до 95 вес.% других образующих керамику компонентов, которые содержат от 50 до 95 вес.% глины и от 5 до 50 вес.% полевого шпата, сырца, имеющего желательную форму;

b) обжиг сырца при температуре от 1100 до 1300°С с получением керамического материала, причем образующие керамику компоненты выбирают таким образом, чтобы после обжига линейные размеры сырца не уменьшались более чем на 2,5%.

6. Способ по п.5, в котором процессы формования и обжига проводят с обеспечением увеличения линейных размеров сырца с получением в результате чистого объемного расширения.



 

Похожие патенты:

Изобретение относится к керамическим массам для изготовления кордиеритовых изделий, применяемых в качестве каталитических носителей. .

Изобретение относится к производству радиопрозрачных крупногабаритных изделий сложной формы из стеклокерамики литийалюмосиликатного состава и может быть использовано в керамической и авиационной промышленности, в частности, для изготовления антенных обтекателей.

Изобретение относится к производству изделий радиотехнического назначения из стеклокристаллического материала, полученных по керамической технологии, и может быть использовано в керамической и авиационной промышленности.

Изобретение относится к производству радиопрозрачных крупногабаритных изделий сложной формы из стеклокерамики литийалюмосиликатного состава и может быть использовано в керамической и авиационной промышленности, в частности для изготовления антенных обтекателей.

Изобретение относится к керамической промышленности и может быть использовано при изготовлении стеклокерамических изделий типа антенных обтекателей, валов стеклоформующих машин и других изделий методом шликерного литья в пористые формы.

Изобретение относится к производству радиопрозрачных крупногабаритных изделий сложной формы из ситалла по керамической технологии и может быть использовано в керамической и авиационной промышленности, в частности, для изготовления антенных обтекателей.

Изобретение относится к керамической промышленности и может быть использовано в технологии изготовления огнеупорных керамических материалов, в частности плит для вагонов бескапсельного обжига фаянсовых и майоликовых изделий.

Изобретение относится к огнеупорным конструкционным материалам и способам его получения. .

Изобретение относится к производству специальной технической керамики и огнеупоров и может быть использовано для изготовления термостойких и химически стойких электроизоляционных материалов, используемых в машиностроении, химической, электротехнической и огнеупорной промышленностях.

Изобретение относится к технологии получения оптических фотои катодохромных материалов , предназначенных для записи и отображения информации. .

Изобретение относится к керамической промышленности, преимущественно к составам для изготовления термостойкой фарфоровой посуды и лабораторного оборудования, в частности лодочек, предназначенных для анализа расплавленных металлов и замера серы и углерода в чугунах и сталях экспресс-методом.

Изобретение относится к составам фарфоровых масс преимущественно для изготовления санитарно-технических изделий. .

Изобретение относится к составам фарфоровых масс, преимущественно для изготовления санитарно-технических изделий. .

Изобретение относится к керамической промышленности, а именно к получению фарфоровых изделий, например бытового фарфора. .

Изобретение относится к керамической промышленности, а именно к получению фарфоровых изделий. .

Изобретение относится к керамической промышленности, а именно к получению бытового и санитарно-строительного фарфора. .

Изобретение относится к производству фарфоровых изделий, преимущественно декорированных кобальтом. .

Изобретение относится к производству керамических изделий, преимущественно к изготовлению майоликовых изделий художественно-декоративного и бытового назначения.

Изобретение относится к керамической промышленности, а именно к получению фарфоровых изделий. .

Изобретение относится к керамической промышленности, к получению фарфоровых изделий бытового назначения. .
Изобретение относится к производству керамических материалов на основе глинистого сырья и может быть использовано, например, для изготовления лицевого строительного кирпича, черепицы, облицовочной керамической плитки светло-желтого цвета из красножгущихся легкоплавких глин.
Наверх