Способ испытания элементов газотурбинного двигателя

Изобретение относится к стендовым испытаниям элементов конструкции газотурбинного двигателя (ГТД) и может быть использовано для ускоренной экспресс-оценки характеристик материалов лопаток авиационных ГТД. Технический результат: повышение достоверности испытаний элементов газотурбинного двигателя. Сущность изобретения: способ испытания элементов газотурбинного двигателя путем термоциклического воздействия на элемент газовым потоком заключается в том, что сначала проводят химическую обработку в электролите, затем электрохимическую анодную обработку, далее механическое нагружение, состоящее из нагружения на вибростенде и статического нагружения, после чего термоциклическое воздействие в агрессивной атмосфере СО и SO2 и далее механическое нагружение, причем данный цикл производят многократно. 1 ил.

 

Изобретение относится к стендовым испытаниям элементов конструкции газотурбинного двигателя (ГТД) и может быть использовано для ускоренной экспресс-оценки характеристик материалов лопаток авиационных ГТД.

Наиболее близким по технической сущности к заявляемому является способ испытания лопаток турбин на трещиностойкость при термоциклическом нагружении (SU 1173254, МПК 7 G 01 N 3/60, 1985).

Недостатком данного способа является незначительное воздействие агрессивных компонентов на элементы газотурбинного двигателя, отсутствие воспроизведения механического нагружения, имеющего место в реальной эксплуатации, вследствие чего увеличивается время и стоимость проведения испытаний.

Надежность и ресурс ГТД определяется в основном элементами «горячей» части двигателя, ресурс которых исчерпывается под воздействием статического, циклического, повторно-статического и усталостного нагружении, а также процессов газовой коррозии. Поэтому эти воздействия необходимо учитывать при проведении испытаний для достоверности оценки ресурса материалов.

Задача изобретения состоит в повышении достоверности испытаний элементов газотурбинного двигателя за счет многократной циклической обработки.

Поставленная задача достигается путем предварительной химической обработки в электролите и термоциклического воздействия на элемент газовым потоком с агрессивной атмосферой CO2 и SO2, при этом сначала проводят химическую обработку в электролите, затем электрохимическую анодную обработку, далее механическое нагружение, состоящее из нагружения на вибростенде и статического нагружения, после чего термоциклическое воздействие в агрессивной атмосфере и далее механическое нагружение, причем данный цикл производят многократно.

Воздействие механического нагружения осуществляется циклически. Количество циклов нагружения лопаток выбирается соизмеримым с работой лопатки в реальной эксплуатации; при форсировании испытаний количество циклов должно быть больше. Число циклов выдержки в атмосфере агрессивных газов и последующего механического нагружения определяется экспериментальным путем. При этом воспроизводится действие от центробежных и вибрационных нагрузок.

Существо изобретения поясняется чертежом, на котором изображена зависимость суммарной повреждаемости элементов ГТД предложенного способа испытаний (ПC) и аналога (ПA) от времени испытаний. При этом наблюдается относительное увеличение повреждаемости элементов ГТД в заявленном способе в отличие от прототипа (ΔП) за одинаковый промежуток времени.

Пример конкретной реализации способа

Реализация способа проводилась на примере сопловой лопатки вспомогательной силовой установки ТА-6 из сплава ЖС6К.

Образцы лопаток подвергают предварительному электрохимическому травлению в электролите (лимонная кислота, (NH4)SO4 и вода) при 25°С в течение 1-2 мин с плотностью тока 0,05-0,07 А/см2. Затем проводят электрохимическую анодную обработку образца в растворе NaNO3 в гальваностатическом режиме при силе тока 50 мА и температуре 25°С в течение 5 мин. Далее осуществляют механическое нагружение на стенде. После чего элементы конструкций подвергают термическому нагружению в малоинерционной электрической печи с агрессивной атмосферой СО2 и SO2, полученной разложением солей MgSO3 и Na2SO3 при высоких температурах, и выдерживают при 880...950°С в течение 30 мин. В заключении цикла осуществляют механическое нагружение на стенде. Таким образом, исследуемые образцы подвергают описанному воздействию 3 раза.

Химический и фазовый состав повреждений, получаемых в предлагаемом способе испытаний, контролировали по результатам физико-химического фазового анализа с использованием металлографического и электронографических методов. В результате введения в программу испытаний механических нагружений и реализации полициклического нагружения суммарная повреждаемость образцов лопаток наиболее точно соответствует повреждаемости, имеющей место в реальных условиях эксплуатации.

За счет ускорения процессов в модельных испытаниях по сравнению с эксплутационными длительность испытаний по оценке ресурса лопаток, а также затраты на их проведение существенно уменьшаются.

Способ испытания элементов газотурбинного двигателя путем термоциклического воздействия на элемент газовым потоком, отличающийся тем, что сначала проводят химическую обработку в электролите, затем электрохимическую анодную обработку, далее механическое нагружение, состоящее из нагружения на вибростенде и статического нагружения, после чего термоциклическое воздействие в агрессивной атмосфере СО и SO2 и далее механическое нагружение, причем данный цикл производят многократно.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при испытании сосудов, корпусных деталей и другого оборудования, работающих под внутренним давлением, а именно подвергающихся испытаниям воздухом или инертным газом под рабочим давлением.

Изобретение относится к испытательной технике. .

Изобретение относится к машиностроению и может быть использовано для контроля качества крупномодульных зубчатых передач, например, главных приводов, черновых и чистовых шестеренных клетей прокатных станов, а так же тяговых зубчатых передач локомотивов железнодорожного транспорта.

Изобретение относится к испытательной технике и может быть использовано для испытаний шаровых шарниров или рулевых тяг автомобилей на долговечность с имитацией эксплуатационных нагрузок и движений.

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике. .

Изобретение относится к измерительной технике и может быть использовано на железнодорожном транспорте для диагностики подшипников различных роторных механизмов, изменяющих при работе ориентацию в пространстве, например колесных пар, электродвигателей, редукторов и т.д.

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике и может быть использовано при проектировании и отработке космических аппаратов

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами

Изобретение относится к испытательной технике

Изобретение относится к области электротехники и может быть использовано в промышленности и сельском хозяйстве для проведения стендовых испытаний подшипников электродвигателей

Изобретение относится к измерительной технике

Изобретение относится к области испытательной техники и предназначено для использования в двигателестроснии, в частности для оптимизации работы системы смазки коленчатого вала двигателя внутреннего сгорания

Изобретение относится к области упаковочной техники и предназначено для дозирования жидких (молоко, вода, негазированные напитки, соки и др.) и пастообразных (сметана, майонез и др.) продуктов

Изобретение относится к испытательной технике

Изобретение относится к области разработки и исследования работоспособности покрытий для пар трения в узлах вращения
Наверх