Способ получения прочно сцепленных гальванических покрытий на магнетите

Изобретение относится к гальваностегии металлов на оксиды железа, в частности на магнетит, являющийся полупроводником n-типа, и может быть использовано для осаждения декоративных и технически функциональных покрытий на оксидную основу. Способ включает катодную поляризацию магнетита в растворе серной или фосфорной кислот при потенциостатических условиях в интервале 0,3-0,5 В (н.в.э.) с последующей гальваностатической анодной обработкой при плотностях тока 30-320 А/м2 перед нанесением покрытий. Технический результат: повышение прочности сцепления металла покрытия с магнетитом. 1 табл., 1 ил.

 

Изобретение относится к гальваностегии металлов на оксиды железа, в частности - на магнетит (Fe3O4), являющийся полупроводником n-типа. Может быть применено для осаждения декоративных и технически функциональных покрытий на оксидную основу.

Известен способ металлизации полупроводника (Пат. DE №3202484, опубликован 04.08.83), где прочная связь покрытия с подложкой достигается без предварительного травления, но путем активирования поверхности металлорганическими соединениями с последующей металлизацией основы.

Известен способ получения металлопокрытий на твердых телах (Пат. DE №3332029, опубликован 22.03.84), где прочность сцепления с основой достигается обработкой, включающей профилирование поверхности химическим травлением и нанесением металлического покрытия различными методами.

Известен способ получения металлического покрытия на полупроводниковой поверхности (Пат. US №4419390, опубликован 06.12.83) путем обработки поверхности восстановителями для придания нужных свойств и восстановления ионов металлопокрытия.

Указанные в приведенных выше аналогах способы не обеспечивают достаточную прочность сцепления металлопокрытия, наносимого электроосаждением на магнетит из стандартных электролитов.

Задачей изобретения являлось повышение прочности сцепления металла покрытия с магнетитом.

Поставленная задача решается тем, что перед нанесением покрытий осуществляют катодную поляризацию магнетита в растворе серной или фосфорной кислот при потенциостатических условиях в интервале 0.3-0.5 В (н.в.э.), с последующей гальваностатической анодной обработкой при плотностях тока 30-320 А/м2.

Именно указанная выше совокупность приемов обработки поверхности магнетита перед нанесением покрытий позволяет получить предусмотренный технический результат. Таким образом, прочное гальваническое покрытие на магнетите получают при двух совместно выполняемых условиях:

1. активизации микрорельефа магнетита путем травления и обеспечения тем самым пористости оксида для более глубокого осаждения гальванического покрытия (геометрический фактор);

2. удалении продуктов гидролиза и стабилизации рельефа (химический фактор).

Активизация достигается катодной поляризацией магнетита в растворах кислот H2SO4 или Н3PO4, контролируемой по напряжению в пределах 0,3-0,5 В.

Условия по пункту 2 выполняются в тех же растворах при анодной поляризации магнетита, контролируемой по плотности тока в интервале 30-320 А/м2.

Предложенное изобретение иллюстрируется чертежом, на котором показана зависимость логарифма плотности тока обработки магнетита в 0,5 М H2SO4 от его потенциала относительно нормального водородного электрода (н.в.э.). Активация магнетита происходит в области К, а удаление продуктов гидролиза и стабилизация рельефа - в области А, которые показаны заштрихованными на чертеже.

Пример.

Способ осуществляют следующим образом. Готовят 0,3 М раствор фосфорной кислоты, в который опускают электрод, выполненный из магнетита, затем его в течение 10 мин подвергают катодной поляризации при потенциале 0,3 В, т.е. процесс ведут в потенциостатических условиях. После этого электрод подвергают гальваностатической обработке при плотности тока 100 А/м. Обработанный таким образом электрод покрывают медью (50 мкм). Прочность сцепления полученного покрытия составляет 7,8 кг/см2.

Другие примеры реализации предложенного способа отражены в таблице. Там же показана прочность покрытия в случае только катодной обработки или только анодной.

Таблица

Прочность сцепления меди и никеля с магнетитом после обработки в 0,5 М растворе серной кислоты
Вид обработкиПотенциал, В (н.в.э.)Плотность тока, А/м2Область на чертежеПрочность сцепления, кг/см2
CuNi
Без травления---0.280.32
Катодный режим t=10 мин0,3-К1.150.83
Анодный режим t=10 мин-320А6.605.23
Сочетание катодного и анодного режимов0,530К+А8.198.92

Способ получения прочно сцепленных гальванических покрытий на магнетите, отличающийся тем, что перед нанесением покрытий осуществляют катодную поляризацию магнетита в растворе серной или фосфорной кислот при потенциостатических условиях в интервале 0,3-0,5 В (н.в.э.) с последующей гальваностатической анодной обработкой при плотностях тока 30-320 А/м2.



 

Похожие патенты:
Изобретение относится к технологическим процессам интегральной электроники. .
Изобретение относится к области гальванотехники и может быть использовано при нанесении защитно-декоративных никелевых покрытий на различные металлические поверхности.

Изобретение относится к технике строительства скважин, а именно к роторам винтовых забойных двигателей для бурения нефтяных и газовых скважин, и может найти применение для добычи нефти и газа.
Изобретение относится к гальванотехникe, а именно к способам нанесения гальванических покрытий на трубчатые изделия, и может быть использовано в металлургии, машиностроении и приборостроении.

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении медной и сверхпроводящей проволоки с хромовым покрытием. .

Изобретение относится к способу защиты поверхности медной фольги от окисления и образования оксидной пленки, и к полученной электролитическим осаждением медной фольге, пригодной для использования в производстве печатных плат, в частности многослойных печатных плат.
Изобретение относится к гальванотехнике и может быть использовано в технологии нанесения гальванических покрытий. .

Изобретение относится к способам получения изделий из металлов и сплавов с гальваническими покрытиями и может быть использовано в машиностроении и приборостроении.

Изобретение относится к детали с покрытием и способу ее изготовления и может быть использовано для изготовления крепежных средств для закрепления комплектующих деталей

Изобретение относится к области гальваностегии, в частности к способам получения изделий с гальваническими покрытиями, и может быть использовано в промышленности в качестве твердого износостойкого покрытия с целью замены твердого хромирования, вредного на сегодняшний день

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной обкладки перед нанесением покрытия, заключающуюся в пескоструйной обработке как плоской пластины, так и внутренней поверхности корпуса конденсатора или получении на внутренней поверхности корпуса конденсатора подслоя танталового порошка путем нанесения спиртовой суспензии танталового порошка с последующим спеканием в вакууме, травление в растворе азотной кислоты с последующей промывкой дистиллированной водой и нанесение на подготовленную поверхность рутениевого покрытия. При этом пескоструйную обработку проводят с помощью порошка оксида алюминия или карбида кремния с крупностью частиц от 20 до 100 мкм при давлении воздуха 1,5-3,0 ат. Травление в растворе азотной кислоты производят в присутствии плавиковой кислоты или фторида аммония в количестве 10-20 мас.% при температуре 25-30°C в течение 20-60 с. Нанесение рутениевого покрытия с толщиной 0,5-5,0 мкм проводят из электролита, содержащего 2-20 г/л рутения в виде аммонийных солей биядерного нитридоаквахлоридного комплекса, например, с формулой (NH4)3[Ru2(µ-N)(H2O)2Cl8], 5-20 г/л серной кислоты, 10-20 г/л сульфамата аммония, в условиях перемешивания электролита при катодной плотности тока 1,0-10,0 А/дм2, температуре 40-60°C. Затем полученное металлическое рутениевое покрытие подвергают электрохимическому анодному оксидированию в растворе 35-40%-ной серной, фосфорной, азотной или щавелевой кислоты с выдержкой под анодным потенциалом при напряжении 10-100 В и силе тока 100-500 мА в течение 5-20 мин. Технический результат заключается в увеличении удельной емкости танталовых объемно-пористых электролитических конденсаторов и достижении устойчивой работы при эксплуатации в широком диапазоне температур. 2 з.п. ф-лы, 2 ил., 8 табл.

Изобретение относится к способу создания медных покрытий с развитой поверхностью, в котором из раствора электролита методом электроосаждения на металлический носитель наносят медное покрытие. Способ характеризуется тем, что процесс электроосаждения ведут с применением механоактивации катода из сернокислого электролита с добавлением инертных к электролиту частиц активатора в виде порошка фракцией 10-30 мкм в концентрации 20-50 г/л, электролит с активатором перед началом электроосаждения тщательно механически или с помощью воздуха перемешивают, затем перемешивание прекращают и запускают процесс электрокристаллизации меди или электроосаждения. Процесс осуществляют при периодическом перемешивании электролита с активатором в потенциостатическом режиме при перенапряжениях 50-200 мВ в течение 10-20 минут. Изобретение дает возможность создавать медные дефектные кристаллы, покрытия и слои из них, имеющие развитую поверхность. 5 з.п. ф-лы, 8 пр., 3 ил.
Наверх