Двухкоординатный струнный наклономер

Изобретение относится к области геофизики и может быть использовано для регистрации наклолнов и сейсмических колебаний земной коры и инженерных сооружений. Заявлен двухкоординатный струнный наклономер, содержащий корпус, инерционное тело в виде двух конформных сосудов, пространство между стенками которых заполнено ртутью, и два вертикальных осевых стержня, прикрепленных к внешнему и внутреннему сосудам. Первый стержень связан с дифференциальным струнным преобразователем. Его конец через гибкую тягу прикреплен к крышке корпуса. Второй тензопреобразователь выполнен в виде дифференциального емкостного преобразователя, в котором роторная обкладка в виде жесткого металлического диска прикреплена ко второму осевому стержню под прямыми углом к нему и связана с корпусом через две пары жестких пружин, разнесенных вдоль двух горизонтальных координат. Четыре пары статорных обкладок расположены симметрично по обе стороны от роторной обкладки. К нижней части внешнего сосуда прикреплена четырехгранная металлическая призма, зажатая между двумя парами пьезоэлементов с электродами на боковых гранях, подсоединенными через выключатель к источнику постоянного напряжения с возможностью освобождения сосуда при его включении. Технический результат: повышение функциональных возможностей устройства. 1 ил.

 

Изобретение относится к геофизической аппаратуре и может быть использовано для регистрации наклонов и сейсмических колебаний земной коры и инженерных сооружений, для регистрацииа малых горизонтальных гравитационных ускорений в прецизионных физических экспериментах, а также в качестве датчика горизонтальных ускорений в системах инерциальной навигации.

Наиболее распространен на практике наклономер с горизонтальным маятником - наклономер А.Е.Островского (Островский А.Е. Наклономер с фотоэлектрической регистрацией // изучение земных приливов. М.: Изд-во АН СССР, 1961, №2. С.41-75). К недостаткам этого наклономера относятся сложность конструкции, трудоемкость измерений, недостаточная помехозащищенность чувствительной системы, ограниченные точность и диапазон измерений, малая информативность (измерения проводятся только в одном азимуте) и нестабильность нуля, обусловленная нестабильностью упругих параметров пружины и затрудняющая выявление медленных тектонических наклонов земной коры.

Наиболее близким по технической сущности к заявляемому является двухкоординатный струнный наклономер (ДСН) (Таймазов Д.Г., А.с. СССР №1242713. Наклономер Д.Г.Таймазова // БИ, 1986, №25), в котором устранено большинство из перечисленных недостатков. Он содержит корпус и инерционное тело, взаимодействующее с корпусом через дифференциальные струнные преобразователи, расположенные попарно во взаимно перпендикулярных плоскостях, симметрично относительно вертикальной оси прибора, под острым углом к нему. Роль инерционного тела выполняет жидкость, например ртуть, занимающая зазор между стенками коаксиальных сосудов, соединенных с противоположными основаниями вакуумированного корпуса через механически развязанные между собой жесткие рамки, оканчивающиеся осевыми стержнями с гибкими тягами на концах. Струны преобразователя прикреплены к концам осевых стержней, каждый из которых зафиксирован на оси корпуса гибкими горизонтальными растяжками, а расстояния от точек крепления растяжек к стержням до их концов меньше, чем до геометрического центра коаксиальных сосудов. Осевые тяги принимают на себя основную часть силы гидростатического давления ртути на внешний сосуд и выталкивающей силы, действующей на внутренний сосуд.

Недостатками этого наклономера являются отсутствие защиты от механических воздействий и ограниченные динамический диапазон и функциональные возможности, связанные с использованием струнных преобразователей в обеих чувствительных системах.

В предлагаемом двухкоординатном струнном наклономере вместо второго (нижнего) струнного преобразователя предусмотрена чувствительная система емкостного типа, настроенная на другой динамический диапазон, охватывающий весь диапазон сейсмических ускорений. Пробное тело выполнено в виде сосуда с ртутью. Для уменьшения требуемого количества ртути в него конформно помещен без механического контакта с ним жесткий внутренний сосуд, прикрепленный ко второй чувствительной системе, настроенной на сейсмический диапазон. В первом случае устройство выполняет только функции двухкоординатного наклономера, а во втором - функции наклономера-сейсмографа (Н-С) с широким динамическим диапазоном (до 220 дБ), который может работать как в режиме ДСН, так и в режиме трехкоординатного сейсмоакселерографа (ТСА).

Гибкая осевая тяга, прикрепленная к верхнему концу осевого стержня, принимает на себя основную часть силы гидростатического давления ртути на внешний сосуд. Благодаря этому разгружаются тензопреобразователи и увеличивается относительное изменение их натяжения при наклонах и горизонтальных ускорениях, т.е. повышается чувствительность наклономера. Использование ртути в качестве инерционного тела позволяет увеличить осевые усилия, а следовательно, и чувствительность, без увеличения массы инерционного тела и всего прибора в целом. Дополнительное увеличение чувствительности и точности достигается закреплением стержня горизонтальными растяжками, образующими точку опоры для коромысла, к длинному плечу которого прикреплен внешний сосуд, а к короткому плечу - тензопреобразователи, расположенные под острым углом к вертикальной оси наклономера.

Для надежный защиты чувствительного элемента от сейсмических ударов и при транспортировке в ДСН предусмотрен арретир, состоящий из двух пар пьезоэлементов, между которыми зажато пробное тело. При приложении электрического напряжения к боковым граням пьезоэлементов последние укорачиваются, освобождая пробное тело (поперечный обратный пьезоэффект). После выполнения измерений напряжение выключается и пробное тело вновь фиксируется между пьезоэлементами.

На чертеже изображен схематический разрез предлагаемого ДСН.

В вакуумированном корпусе 1 установлены два жестких конформных сосуда 2 и 3, зазор между которыми заполнен ртутью 4. Сосуд 2 через жестко прикрепленный к нему стержень 5 и гибкую тягу 6 соединен с верхним основанием корпуса. Стержень 5 зафиксирован на оси прибора двумя парами горизонтальных растяжек 7. К верхнему концу стержня прикреплены тензопреобразователи, выполненные в виде струн 8, проходящих между полюсами постоянных магнитов 9. Концы струн присоединены к измерителю частот их собственных колебаний (не показан). Полый сосуд 3 через жесткую рамку 10, стержень 11, жесткий металлический диск 12 и две пары жестких пружин 13, разнесенных вдоль двух горизонтальных координат, прикреплен к корпусу 1. По обе стороны от диска 12 установлены 4 пары обкладок 14, подключенных к дифференциальному емкостному преобразователю (последний не показан).

При изменении угла наклона корпуса на такую же величину по отношению к оси прибора изменяются и углы наклона силы гидростатического давления, действующей со стороны ртути 4 на сосуд 2, и выталкивающей силы, действующей на полый сосуд 3. В результате этого изменяются поперечные составляющие этих сил, которые через стержни 5 и 11 передаются соответственно струнам 8, образующим дифференциальные частотные преобразователи, и диску 12, являющемуся роторной обкладкой дифференциального емкостного датчика 14.

Для арретирования ЧЭ к нижней части сосуда 2 приварена 4-гранная металлическая призма 15, зажатая между двумя парами пьезоэлементов 16, на боковых гранях которых расположены (нанесены гальванически или напылением) разноименные электроды 17 и 18.

Суммарное изменение натяжения противолежащих струн 8 при наклоне корпуса на малый угол ϕ в плоскости их расположения можно описать выражением

где d и L - расстояния от точки крепления растяжек к стержню 5 соответственно до его верхнего конца и до геометрического центра сосудов 2 и 3, α - угол между струнами и вертикальной осью прибора, V - объем сосуда 3, ρ - плотность ртути, g - нормальное значение ускорения силы тяжести.

Соответствующее Δf изменение разностной частоты собственных колебаний этих струн составит

где ν - частота собственных колебаний струн 8 при номинальном натяжении f.

При V=1500 см3, L/d=5, ρ=13,6 г/см3 (ртуть), f=100 Г, sinα=0,1 (α≈6°) и достигнутой точности измерения Δν/ν в ±10-7, расчетная погрешность измерения угла ϕ, вычисленная по формуле (2), составляет ±4·10-6 угл.сек, что соответствует горизонтальным ускорениям ˜2·10-11 g.

Если ввести ограничение Δf≤0,01f, при котором можно пренебречь квадратичными членами в уравнении колебания струны, то диапазон измерений составит ±0,4 угл.сек (˜2·10-6), что соответствует динамическому диапазону регистрации наклонов в 100 дБ. При сферической форме сосудов и зазоре между ними 2 мм количество необходимой ртути составляет ˜127 см3 (˜1,7 кг).

Вторая чувствительная система с емкостным преобразователем сильно загублена и предназначена для регистрации сейсмоакселерограмм в интервале амплитуд от 2·10-6 до 2 g, соответствующем динамическому диапазону 120 дБ. Таким образом, общий динамический диапазон наклономера-сейсмографа составит 220 дБ. При работе в режиме ТСА струнная чувствительная система арретирована: автоматическое снятие арретировки предусмотрено только на время регистрации наклонов. Это осуществляется путем подачи на электроды 17 и 18 постоянного напряжения такой величины и полярности, чтобы пьезоэлектрические стержни 16 укоротились и освободили пробное тело (сосуд 2). Жесткость пружин 13 подобрана так, чтобы смещения сосуда 3 при боковых ускорениях в 2 g не превышали ˜1 мм при зазоре между стенками сосудов в 2 мм.

Режим ДСН может быть использован как для регистрации наклонов в геофизических и инженерных целях, так и в качестве высокочувствительного двухкоординатного акселерометра в системах инерциальной навигации. Он может быть также использован для измерения малых сил гравитационной природы в прецизионных физических экспериментах. В режиме ТСА при измерении горизонтальных составляющих ускорений в плечи дифференциального емкостного преобразователя включаются противолежащие в данном азимуте обкладки, находящиеся по одну сторону от пластины 12 (верхняя или нижняя пара), а при измерении вертикальной составляющей - любое число из 4-х пар противолежащих обкладок, расположенных по разные стороны от пластины 12.

В режиме ДСН ввиду малой номинальной нагрузки на струны и дифференциального метода измерений их частот влияние на результаты дрейфа нуля струнных преобразователей ничтожно мало. Так, если дрейф нуля преобразователя принять равным в относительных единицах 10-7 в сутки (как в струнных гравиметрах), то это приведет к дрейфу нуля наклономера менее 0",3 в год. В режиме ТСА дрейф нуля прибора определяется исключительно изменениями во времени упругих характеристик пружин 13, которые имеют линейный характер и, следовательно, легко поддаются аналитическому учету.

Теоретически рассчитанные (ожидаемые) характеристики предлагаемого наклономера следующие: погрешность измерений ±4·10-6 угл.сек, что соответствует горизонтальным ускорениям ˜±2·10-11; дрейф нуля в режиме ДСН - менее 0",3 в год; общий динамический диапазон - 220 дБ. Малая амплитуда отклонений сосуда 3 от положения равновесия и демпфирующее действие рабочей жидкости (ртути), обеспечивающее быстрое затухание его колебаний, предопределяют возможность регистрации высокочастотных сейсмических колебаний (до десятков Гц), и поскольку со стороны низких частот диапазон не ограничен (благодаря дифференциальному емкостному преобразователю), то можно констатировать, что в режиме ТСА прибор охватывает весь частотный диапазон сейсмических колебаний.

Таким образом, введение дополнительной чувствительной системы и надежной системы арретирования расширяет функциональные возможности ДСН и позволяет использовать его, помимо регистрации наклонов в геофизических и инженерных целях, также в качестве высокочувствительного двухкомпонентного и/или трехкомпонентного акселерометра в системах инерциальной навигации, для измерения малых сил гравитационной природы в прецизионных физических экспериментах, а также для регистрации сейсмоакселерограмм в широком динамическом и частотном диапазоне. Малые габариты позволяют использовать его для скважинных наблюдений за наклонами земной коры и сейсмическими колебаниями в прогностических целях.

Двухкоординатный струнный наклономер, содержащий корпус, инерционное тело в виде внешнего и внутреннего конформных сосудов, пространство между стенками которых заполнено жидкостью, например ртутью, два вертикальных осевых стержня, прикрепленных к внешнему и внутреннему сосудам и связанные соответственно с первым и вторым тензопреобразователями, первый из которых выполнен в виде дифференциального струнного преобразователя, а конец первого стержня через гибкую тягу прикреплен к крышке корпуса, отличающийся тем, что второй тензопреобразователь выполнен в виде дифференциального емкостного преобразователя, в котором роторная обкладка в виде жесткого металлического диска прикреплена ко второму осевому стержню под прямым углом к нему и связана с корпусом через две пары жестких пружин, разнесенных вдоль двух горизонтальных координат, четыре пары статорных обкладок расположены симметрично по обе стороны от роторной обкладки, при этом к нижней части внешнего сосуда прикреплена четырехгранная металлическая призма, зажатая между двумя парами пьезоэлементов с электродами на боковых гранях, соединенными через выключатель к источнику постоянного напряжения с возможностью освобождения сосуда при его включении.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности, а именно к бурению скважин, и предназначено для определения пространственного положения стволов бурящихся скважин и прежде всего наклонно направленных глубоких и разведочных скважин.

Изобретение относится к измерительной технике и может быть использовано для диагностики и контроля состояния приконтурного массива и анкерной крепи. .

Изобретение относится к средствам, указывающим на недозволенное действие, и может быть использовано как средство для обнаружения наклона объекта техники. .

Изобретение относится к области измерительной техники и может быть использовано в нефтепромысловой геофизике для определения углового положения буровой скважины, а также в геомагнитной навигации для определения углов курса, крена и тангажа подвижного объекта.

Изобретение относится к разведочному бурению и предназначено для измерения кривизны геологоразведочных скважин. .

Изобретение относится к области технической физики и может использоваться для измерения наклонов сооружений, а также в геодезических приборах. .

Изобретение относится к точному приборостроению и может быть использовано для обследования в немагнитных буровых трубах нефтяных, газовых и геофизических скважин.

Изобретение относится к приборостроению и может быть использовано для определения углов отклонения от вертикали различных объектов. .

Изобретение относится к измерительной технике и может быть использовано для измерения угла наклона объектов относительно горизонтальной плоскости

Уровень // 2290607
Изобретение относится к геодезическому приборостроению и предназначено для выверки горизонтальности линий и плоскостей

Изобретение относится к области инклинометрии скважин, в частности к определению пространственного положения ствола скважины феррозондовым инклинометром

Изобретение относится к области инженерной геодезии, в частности к устройствам для контроля планового положения ствола скважины на различных глубинах, и может найти применение, например, при контроле оползневых явлений и деформаций подпорных стенок при откопке котлованов при подземном строительстве

Изобретение относится к робототехнике и предназначено для определения углового положения, а также подъема тележки мобильного робота при его перемещении по неровной поверхности в том случае, когда размеры препятствий по длине и ширине не превышают габариты тележки

Изобретение относится к измерительной технике, в частности к устройствам для высокоточного измерения превышений, а также постоянного контроля за высотным положением точек инженерных сооружений и технологического оборудования сочетанием методов гидродинамического и гидростатического нивелирования

Изобретение относится к области измерительной техники и предназначено для взвешивания грузов большой массы, преимущественно при аттестации гирь

Изобретение относится к устройствам для определения угла, а также направления наклона плоскости, и может найти применение в строительстве

Изобретение относится к измерительным приборам для фиксирования и учета предельных колебаний при транспортировке и может быть использовано в медицине чрезвычайных происшествий, в частности в тренажерах-носилках для тренировки спасателей, с целью выработки навыков безопасной транспортировки больных в чрезвычайных ситуациях, а также при транспортировке больных и раненых по пересеченной местности в чрезвычайных ситуациях

Изобретение относится к контролю параметров при бурении нефтяных и газовых скважин с использованием забойных телеметрических систем, конкретно к креплению электронных компонентов внутри скважинного прибора (СП) телеметрической системы
Наверх