Способ обогащения титаномагнетитовых руд

Изобретение относится к обогащению титаномагнетитовых руд. Позволяет повысить качество железованадиевого концентрата за счет увеличения в нем массовой доли железа при одновременном снижении массовой доли диоксида титана. Способ включает дробление исходной руды до крупности 6-0 мм, после чего проводят сухую магнитную сепарацию исходной дробленой руды в неоднородном магнитном поле, в котором по направлению потока создают три зоны с уменьшающейся в них по экстремальной зависимости напряженностью магнитного поля. В первой зоне магнитного поля его максимальную напряженность задают равной 128-136 кА/м, а во второй и третьей зонах максимальную напряженность последовательно уменьшают относительно первой зоны в соответствии 1:0,88:0,81. Полученный железованадиевый концентрат доизмельчают до крупности 0,03-0 мм в растворе жидкого стекла с концентрацией 0,08-0,1%, после чего осуществляют перечистку концентрата. 1 табл.

 

Изобретение относится к обогащению полезных ископаемых и может быть использовано для обогащения руд, содержащих минералы с различной магнитной восприимчивостью, в частности титаномагнетитовых руд.

Известен способ обогащения титаномагнетитовых руд, включающий дробление и грохочение руды до крупности 25-0 мм, сухую магнитную сепарацию надрешетного продукта, измельчение подрешетного продукта совместно с магнитным продуктом сухой магнитной сепарации до 5-0 мм и мокрую магнитную сепарацию, доизмельчение магнитного продукта и песков классификации до 0,15-0 мм и последующую их мокрую магнитную сепарацию (см. Справочник по обогащению руд. В 3-х т. Гл. ред. О.С.Богданов. Т.3. "Обогатительные фабрики". М., "Недра", 1974. - с.264).

Недостатком данного способа является низкая массовая доля железа и повышенная массовая доля диоксида титана в получаемом железованадиевом концентрате за счет того, что крупность измельченной руды, составляющая 0,15-0 мм, не обеспечивает высокую степень раскрытия сростков магнетита с ильменитом и с минералами вмещающих пород, в связи с чем имеющиеся перечистки не обеспечивают выделения ильменита и минералов вмещающих пород из железованадиевого концентрата.

Наиболее близким аналогом к заявляемому объекту является способ обогащения титаномагнетитовых руд, включающий дробление исходной руды, сухую магнитную сепарацию, измельчение, мокрую магнитную сепарацию измельченной руды и флотацию хвостов мокрой магнитной сепарации. При этом дробление ведут до крупности 20-0 мм, а измельчение - до 0,2-0 мм (см. В.Г.Деркач. Фабрики для обогащения титановых руд // Л., 1958 - с.10).

Недостатком известного способа является низкое качество получаемого железованадиевого концентрата, имеющего низкую массовую долю железа и высокую массовую долю диоксида титана за счет того, что указанное измельчение дробленой руды не обеспечивает достаточную степень раскрытия сростков магнетита с ильменитом и минералами вмещающих пород, что приводит к значительному переходу их количества в концентрат.

Техническая задача, решаемая изобретением, заключается в повышении качества железованадиевого концентрата путем увеличения в нем массовой доли железа при одновременном снижении массовой доли диоксида титана.

Поставленная задача решается тем, что в известном способе обогащения титаномагнетитовой руды, включающем дробление исходной руды, сухую магнитную сепарацию, измельчение, мокрую магнитную сепарацию измельченной руды с получением железованадиевого концентрата и флотацию хвостов мокрой магнитной сепарации, согласно изобретению, дробление исходной руды ведут до крупности 6-0 мм, сухую магнитную сепарацию осуществляют в неоднородном магнитном поле, в котором по направлению движения потока дробленой руды создают три зоны с последовательно уменьшающейся максимальной напряженностью магнитного в соотношении 1:0, 88:0, 81, причем максимальную напряженность магнитного поля в первой зоне задают равной 128-136 кА/м, а после мокрой магнитной сепарации полученный железованадиевый концентрат доизмельчают до крупности 0,03-0 мм в растворе жидкого стекла с концентрацией 0,08-0,1 мас.%, после чего осуществляют перечистку концентрата в магнитном поле.

Известна операция дробления железосодержащих руд до крупности 6-0 мм для обеспечения более полного раскрытия сростков минералов (см. Баранов В.Ф., Сентемова В.А., Ядрышников А.О. Перспективы модернизации рудоподготовительных отделений железорудных фабрик России // Обогащение руд. 2002. №2. с.3-8).

В заявляемом способе дробление исходной руды до крупности 6-0 мм также предназначено для максимального раскрытия сростков минералов.

Отличительные признаки, характеризующие сухую магнитную сепарацию дробленой руды в неоднородном магнитном поле с последовательно изменяющимся в его зонах параметрами максимальной напряженности в известных технических решениях не обнаружены.

Известно измельчение железосодержащих руд до крупности 0,03-0 мм для раскрытия сростков минералов (см. Магнитная регенерация и сепарация при обогащении руд и углей / В.В.Кармазин, В.И.Кармазин, В.И.Бинкевич. - М., "Недра", 1968. - с.11).

В заявляемом способе доизмельчение железованадиевого концентрата до крупности 0,03-0 мм также предназначено для наиболее полного раскрытие сростков.

Известно использование жидкого стекла в качестве реагента-диспергатора, позволяющего предотвратить слипание немагнитных частиц (см. Теория и технология флотации руд / О.С.Богданов, И.И.Максимов, А.К.Поднек и др. Под общ. ред. О.С.Богданова. - М., Недра. 1980. - с.52).

В заявляемом способе жидкое стекло при взаимодействии с тонкоизмельченным железованадиевым концентратом проявляет новое техническое свойство, заключающееся в гашении магнитных свойств последнего путем снижения величины коэрцитивной силы, что предотвращает магнитное сцепление частиц магнетита с частицами ильменита. Это обеспечивается тем, что в результате гидролиза жидкого стекла появляются ионы SiO32-, HSiO3- и молекулы Н2SiO3, которые закрепляются на поверхности магнетита. Так как данный минерал имеет общую формулу Fe2+ Fe23+ О42-, то ионы SiO32- и HSiO3-, закрепляясь на катионах железа, экранируют близдоменные частицы магнетита от взаимодействия с ильменитом, в результате чего величина их коэрцитивной силы снижается (≈ в 1,7-1,9 раза), а следовательно, магнитное сцепление между частицами магнетита и ильменита будет отсутствовать.

Сведений о доизмельчении железованадиевого концентрата в растворе жидкого стекла в известных технических решениях не обнаружено.

На основании вышеприведенного анализа можно сделать вывод, что для специалиста заявляемый способ обогащения титаномагнетитовых руд явным образом не следует из известного уровня техники, а следовательно, соответствует условию патентоспособности "изобретательский уровень".

Заявляемый способ обогащения титаномагнетитовых руд осуществляют следующим способом.

Исходную титаномагнетитовую руду подвергают дроблению до крупности 6-0 мм, что обеспечивает высокую степень раскрытия сростков железосодержащих минералов с минералами вмещающих пород и способствует последующему избирательному их разделению. Затем осуществляют сухую магнитную сепарацию исходной дробленой руды в неоднородном магнитном поле, в котором по направлению движения потока исходной руды создают три зоны с последовательно уменьшающейся в них максимальной напряженностью магнитного поля в соотношении 1:0,88:0,81. В первой зоне магнитного поля максимальную напряженность задают равной 128-136 кА/м, тогда в соответствии с заявляемым соотношением максимальная напряженность магнитного поля во второй зоне составит 113-120 кА/м, а в третьей зоне относительно первой зоны - максимальная напряженность магнитного поля составит 104-110 кА/м. При этом напряженность магнитного поля в каждой зоне изменяется по экстремальной зависимости.

В процессе сухой магнитной сепарации исходной руды крупностью 6-0 мм в первой зоне магнитного поля с максимальной напряженностью, равной 128-136 кА/м, последовательно происходит интенсивное притягивание к электромагнитной системе сначала свободных частиц магнетита, имеющих наибольшую удельную магнитную восприимчивость, затем сростков магнетита с ильменитом и минералами вмещающих пород и после частиц ильменита. Это позволяет на данном этапе сепарации максимально сконцентрировать железосодержащие минералы в одном слое потока дробленой руды. Одновременно с этим в магнитную фракцию попадают налипшие мелкие и механические увлеченные немагнитные частицы минералов вмещающих пород. В конце первой зоны магнитного поля, где напряженность последнего в соответствии с экстремальной зависимостью снижается до минимума, происходит отрыв магнитных частиц от электромагнитной системы в обратной последовательности: вначале ильменита, сростков магнетита с минералами вмещающих пород и ильменита, а затем магнетита. В результате поток дробленой руды, поступая во вторую зону магнитного поля, имеет слоевое размещение частиц: в нижнем слое концентрируются немагнитные частицы минералов вмещающих пород, в среднем слое потока по мере увеличения удельной магнитной восприимчивости частиц концентрируются вначале частицы ильменита, затем последовательно сростки магнетита с минералами вмещающих пород и сростки магнетита с ильменитом, а в верхнем слое - частицы магнетита. Такая структура потока руды создает оптимальные условия для сухой магнитной сепарации его во второй зоне магнитного поля, имеющего максимальную напряженность 113-120 кА/м, так как воздействие указанного магнитного поля на движущийся расслоенный поток руды обеспечивает интенсивное извлечение из последнего в первую очередь частиц магнетита, размещенных в верхнем слое, затем - его сростков, имеющих меньшую удельную магнитную восприимчивостью, и после частиц ильменита. Причем при подъеме и отрыве указанных частиц происходит соударение их друг с другом во взвешенном состоянии, что обеспечивает очистку поверхности частиц от налипших мелких немагнитных частиц минералов вмещающих пород. Кроме того, во второй зоне магнитного поля происходит удаление из магнитной фракции механически увлеченных частиц минералов вмещающих пород под действием их силы тяжести. Таким образом, в процессе сухой магнитной сепарации во второй зоне магнитного поля происходит дообогащение магнитной фракции исходной руды, поступающей из первой зоны, и одновременно с этим создаются оптимальные условия для дальнейшей сепарации магнитной фракции в третьей зоне магнитного поля, максимальную напряженность которого по сравнению со второй зоной уменьшают до 104-110 кА/м. Процесс дообогащения магнитной фракции в третьей зоне магнитного поля осуществляется аналогично вышеописанному процессу дообогащения ее во второй зоне. А так как максимальную напряженность магнитного поля в третьей зоне задают ниже, чем во второй зоне, то в магнитную фракцию извлекаются не только частицы магнетита, но и его сростки с наибольшей удельной магнитной восприимчивостью. Все остальные частицы переходят при этом в немагнитную фракцию.

Таким образом, осуществление сухой магнитной сепарации дробленой руды в неоднородном магнитном поле с заявляемыми параметрами позволит уже на данном этапе обогащения титаномагнетитовых руд получить более качественный магнитный продукт с повышенной в ней массовой долей железа за счет выделения свободных частиц вмещающей породы в немагнитную фракцию.

Осуществлять сухую магнитную сепарацию исходной руды в трехзонном магнитном поле с параметрами максимальной напряженности в зонах, выходящими за заявляемые минимальные значения, нецелесообразно из-за возможности перехода последовательно по зонам в немагнитную фракцию части железосодержащих частиц с небольшой удельной магнитной восприимчивостью, что снизит извлечение железа в магнитный продукт.

Осуществлять сухую магнитную сепарацию при параметрах максимальной напряженности в зонах магнитного поля, выходящих за заявляемые максимальные значения, нецелесообразно, так как в этом случае происходит интенсивное засорение магнитной фракции большим количеством сростков магнетита с минералами вмещающих пород.

Затем в процессе обогащения полученный магнитный продукт измельчают до крупности 0,1-0 мм и подвергают его мокрой магнитной сепарации при напряженности магнитного поля 73-76 кА/м.

После мокрой магнитной сепарации полученный железованадиевый концентрат направляют на доизмельчение до крупности 0,03-0 мм в растворе жидкого стекла с концентрацией 0,08-0,1%, после чего осуществляют перечистку концентрата в магнитном поле с напряженностью 45-47 кА/м. При этом измельчение железованадиевого концентрата в присутствии жидкого стекла указанной концентрации обеспечивает гашение магнитных свойств тонкоизмельченных частиц путем уменьшения величины коэрцитивной силы магнетита и ильменита, в результате чего обеспечивается высокая избирательность перечистки концентрата путем максимально возможного перехода частиц магнетита в железованадиевый концентрат, а ильменита - в хвосты. Это приводит к значительному увеличению массовой доли железа и уменьшению диоксида титана в концентрате, что повышает его качество.

Осуществлять доизмельчение железованадиевого концентрата до крупности, выходящей за заявляемые пределы, нецелесообразно, так как при крупности ниже минимальной происходит снижение массовой доли железа и увеличение диоксида титана в концентрат за счет интенсивного слипания частиц ильменита с магнетитом. А при крупности частиц концентрата, выходящей за максимальный заявляемый предел, происходит неполная степень раскрытия сростков минералов, что приводит к снижению качества концентрата.

Нецелесообразно осуществлять доизмельчение железованадиевого концентрата в растворе жидкого стекла с концентрацией, выходящей за заявляемый минимальный предел, так как при этом происходит неполное закрепление ионов SiO32- и HSiO3- на поверхности частиц магнетита и ильменита, что приводит к переходу ильменита в железованадиевый концентрат, а следовательно, к повышению массовой доли диоксида титана в нем.

Использование жидкого стекла с концентрацией, выходящей за максимальный предел, также нецелесообразно ввиду удорожания процесса обогащения из-за резкого увеличения расхода жидкого стекла.

После вышеуказанной перечистки железованадиевого концентрата оставшиеся хвосты направляют на флотацию для получения ильменитового концентрата.

Таким образом, заявляемый способ обогащения титаномагнетитовых руд работоспособен и позволяет повысить качество концентрата за счет значительного увеличения массовой доли железа при одновременном снижении массовой доли диоксида титана. Это обеспечивается путем многократного дообогащения магнитного продукта в процессе сухой магнитной сепарации во взвешенном состоянии, позволяющей максимально удалить из него налипшие и механически увлеченные частицы вмещающих пород, а также в результате перечистки доизмельченого железованадиевого концентрата в растворе жидкого стекла предотвращающего магнитного сцепления частиц магнетита и ильменита.

Для обоснования преимущества заявляемого способа по сравнению с прототипом в лабораторных условиях были проведены опыты по обогащению титаномагнетитовых руд Кусинского месторождения, имеющей следующий состав, мас.%: Feобщ - 27,01; Fe2О3 - 18,8; FeO - 20,89; TiO2 - 10,67; SiO2 - 26,70; Al2O3 - 11,97; V2O5 - 0,28; Р2O3 - 0,025; Cr2О3 - 0,029; п.п.п. - 10,636.

Режимы операций и полученные результаты испытаний приведены в таблице.

Анализ приведенных в таблице результатов показывают, что оптимальные условия обогащения титаномагнетитовой руды создается при заявляемых режимах №2, 3 и 4, что обеспечивает по сравнению со способом, взятым за прототип, повышение качества концентрата за счет увеличения массовой доли железа в концентрате с 58,1 до 63,0-64,5% при одновременном снижении в нем массовой доли диоксида титана с 12,3 до 5,1-4,5%.

Использование заявляемого способа с режимами №1 и 5, выходящими за заявляемые пределы, нецелесообразно ввиду снижения извлечения железа в концентрат и увеличения в нем диоксида титана.

Таблица
№ ппНаименование операций и показателей обогащенияТехнологические режимы способов и показателей обогащения
Заявляемый способПрототип
12345
1.Дробление и грохочение исходной руды, крупность, мм 46661025
2.Сухая магнитная сепарация исходной дробленой руды при напряженности магнитного поля по зонам, кА/м
1 зона112128131136145125
2 зона99113115120128
3 зона91104106110118
3. Измельчение до крупности, мм 0,10,10,10,10,10,2
4.Доизмельчение железованадиевого концентрата до крупности, мм в растворе жидкого стекла при концентрации, мас.%0,010,030,030,030,05-
5.Массовая доля в железованадиевом концентрате, %0,050,080,090,10,15-
Железа

Диоксида титана
62,5

6,5
63,0

5,1
64,1

4,8
64,5

4,5
62,8

8,2
58,1

12,3
6.Извлечение железа в концентрат, мас.%64,867,968,569,766,761,74

Способ обогащения титаномагнетитовых руд, включающий дробление исходной руды, сухую магнитную сепарацию, измельчение, мокрую магнитную сепарацию измельченной руды с получением железованадиевого концентрата и флотацию хвостов мокрой магнитной сепарации, отличающийся тем, что дробление исходной руды ведут до крупности 6-0 мм, сухую магнитную сепарацию осуществляют в неоднородном магнитном поле, в котором по направлению движения потока дробленой руды создают три зоны с последовательно уменьшающейся максимальной напряженностью магнитного поля в соотношении 1:0,88:0,81, причем максимальную напряженность магнитного поля в первой зоне задают равной 128-136 кА/м, а после мокрой магнитной сепарации полученный железованадиевый концентрат доизмельчают до крупности 0,03-0 мм в растворе жидкого стекла с концентрацией 0,08-0,1 мас.%, после чего осуществляют перечистку концентрата в магнитном поле.



 

Похожие патенты:

Изобретение относится к области магнитного разделения и может быть использовано в химической, пищевой, энергетической, металлургической, машиностроительной и других отраслях промышленности для удаления из текучих сред примесей, склонных к магнитному осаждению.

Изобретение относится к области магнитного разделения и может быть использовано в химической, пищевой, энергетической, металлургической, машиностроительной и других отраслях промышленности для удаления из жидких и газообразных сред различных ферропримесей, склонных к магнитному осаждению.
Изобретение относится к области металлургии и может быть использовано при переработке металлургических шлаков. .

Изобретение относится к магнитным ловушкам и может быть использовано для выделения ферромагнитных примесей из потока сыпучего материала в химической и других отраслях промышленности.

Изобретение относится к аппарату, предназначенному для сбора магнитных частиц из жидкости, содержащей частицы в сосуде, или для отсоединения частиц в жидкость в сосуде.

Изобретение относится к технологии магнитного отделения твердых материалов от разделяемого вещества и может быть использовано для отделения ферромагнитных включений, например стальной и/или чугунной стружки из фарша, шквары и биологического корма в мясоперерабатывающей промышленности или из цветных металлов в горнодобывающей промышленности.

Изобретение относится к горно-перерабатывающей промышленности и может быть использован для эффективного обогащения разных типов тонкоизмельченных руд и шламов. .

Изобретение относится к обогащению железосодержащих руд и может быть использовано в горнорудной и металлургической промышленности. .

Изобретение относится к области магнитного разделения и может быть использовано в химической, пищевой, энергетической, металлургической, машиностроительной и других отраслях промышленности для удаления из текучих сред различных примесей, склонных к магнитному осаждению

Сепаратор // 2305598
Изобретение относится к области разделения, в том числе магнитного, и может быть использовано в химической, энергетической, пищевой, металлургической и других отраслях промышленности для удаления из двух- и многокомпонентных текучих сред, главным образом газодисперсных потоков, различных примесей, преимущественно склонных к магнитному осаждению

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в черной металлургии на обогатительных фабриках, перерабатывающих магнетитовые руды

Изобретение относится к обогащению полезных ископаемых и может быть использовано для извлечения немагнитных проводящих дисперсных материалов из смеси дисперсных немагнитных материалов, таких как частицы редких и благородных металлов, содержащихся в естественных и техногенных россыпных месторождениях

Сепаратор // 2315662
Изобретение относится к области техники и технологии для извлечения частиц из дисперсных систем (взвесей, коллоидных растворов, суспензий) и может быть использовано при добыче полезных ископаемых для извлечения свободных металлов (золота, платины и др.), окислов большинства металлов, для разделения проводящих частиц и очистки воды

Изобретение относится к разработке и обогащению полезных ископаемых и может быть использовано для извлечения немагнитных проводящих дисперсных материалов из смеси с дисперсными непроводящими немагнитными материалами, таких как частицы редких и благородных металлов, содержащихся в естественных и техногенных россыпных месторождениях

Изобретение относится к области магнитной очистки технологических жидкостей, смазочно-охлаждающих жидкостей, моющих растворов и может быть использовано на металлообрабатывающих производствах, включающих обработку металлов давлением, резанием, а также связанных с прокатом

Изобретение относится к области магнитной очистки технологических жидкостей, смазочно-охлаждающих жидкостей, моющих растворов и может быть использовано на металлообрабатывающих производствах, включающих обработку металлов давлением, резанием, а также связанных с прокатом
Наверх