Устройство для измерения эффективной поверхности рассеяния объектов

Изобретение относится к радиолокации и может быть использовано при создании радиолокационных измерительных комплексов. Достигаемым техническим результатом является повышение разрешающей способности при измерениях эффективной поверхности рассеяния объектов (ЭПР). Указанный результат достигается за счет того, что в заявленном устройстве приемо-передающая антенна выполнена в виде фазированной антенной решетки, состоящей из n элементов, причем одна пятая часть элементов соединена параллельно и подключена к выходу передатчика, а остальные элементы соединены с учетом возможности фазирования и подключены к приемнику, кроме того, устройство содержит блок оценки ЭПР, блок компенсации остаточных фоновых отражений и блок формирования и управления диаграммой направленности (ДН) приемной части антенны, определенным образом соединенные между собой. 2 ил.

 

Изобретение относится к радиолокации, в частности к радиолокационным измерениям, и может быть использовано при создании радиолокационных измерительных комплексов.

Известно устройство для измерения эффективной поверхности рассеяния (ЭПР) объектов (см. Теоретические основы радиолокации". /Под ред. Я.Д.Ширмана, М., Сов. радио, 1970, с.221).

Устройство содержит передатчик, антенный переключатель, антенну, приемник, индикаторное устройство и синхронизатор. При этом выход передатчика соединен со входом антенного переключателя, вход/выход которого соединен с антенной, выход антенного переключателя соединен со входом приемника, выход приемника и координатный выход антенны соединены соответственно с первым и вторым входом индикаторного устройства, каждый из двух выходов синхронизатора соединен с синхровходами передатчика и индикаторного устройства.

Недостатком известного устройства является то, что оно измеряет так называемую "интегральную" или суммарную ЭПР, то есть в этом случае объект целиком находится в поле облучающей волны и отраженный сигнал формируется всей поверхностью объекта. При этом не удается выделить локальные центры отражения, из которых собственно и формируется отраженный сигнал.

Наиболее близким по технической сущности устройством является радиолокационная станция, защищенная патентом России №2217774; 7 G01S 13/00, G01R 29/08.

Радиолокационная станция содержит передатчик, антенный переключатель, антенну, приемник, индикаторное устройство, синхронизатор, при этом выход передатчика соединен со входом антенного переключателя, вход/выход которого соединен с антенной, выход антенного переключателя соединен со входом приемника, выход приемника и координатный выход антенны соединены соответственно с первым и вторым входом индикаторного устройства, каждый из двух выходов синхронизатора соединен с синхровходами передатчика и индикаторного устройства, причем дополнительно введен блок оценки ЭПР объекта, при этом выход приемника, выход индикаторного устройства и выход передатчика соединены соответственно с первым, вторым и третьим входами блока оценки ЭПР объекта, дополнительный выход синхронизатора соединен с синхровходами блока оценки ЭПР объекта.

Недостатком известного устройства является невозможность детального исследования ЭПР с выделением наиболее отражающих элементов - локальных центров отражения, определяющих основной вклад в ЭПР объекта.

Выявление локальных центров отражения является наиболее важной задачей в исследовании ЭПР объектов, поскольку дает много информации об отражающих свойствах радиолокационных целей, необходимых для решения задач, например, по снижению радиолокационной заметности объектов (см. Справочник по радиолокации. /Под ред. М.Скольника. Том.1. М., Сов. радио, 1976, стр.372-373).

Таким образом, решаемой задачей (техническим результатом) является повышение разрешающей способности при измерениях ЭПР и выявление локальных центров отражения.

Поставленная задача решается за счет того, что в известном устройстве для измерения ЭПР объектов, содержащем передатчик, приемо-передающую антенну, приемник и блок оценки ЭПР, приемо-передающая антенна выполнена в виде фазированной антенной решетки, состоящей из n элементов, причем 1/5 часть элементов соединена параллельно и подключена к выходу передатчика, а остальные элементы соединены с учетом возможности фазирования и подключены к приемнику и дополнительно введены блок компенсации и блок формирования и управления диаграммой направленности (ДН) приемной части приемо-передающей антенны, причем выход приемника соединен с блоком оценки ЭПР, выход которого подключен ко входу блока компенсации, ко входу которого подсоединен второй выход передатчика, при этом вторые вход и выход блока оценки ЭПР соединены соответственно с выходом и входом блока формирования и управления ДН приемной части приемо-передающей антенны, второй выход которого подключен к входу приемной части приемо-передающей антенны.

Выполнение приемо-передающей антенны в виде фазированной антенной решетки с различным включением элементов решетки позволяет осуществить следующие условия.

Объект, ЭПР которого измеряется, целиком облучается равномерным полем. Для этого достаточно 1/5 части облучающих элементов, расположенных равномерно на полотне антенной решетки. Приемная часть антенны, состоящая из остальных 4/5 элементов, подключенных с возможностью фазирования таким образом, что ДН приемной антенны сужается в узкий пучок, который с помощью блока фазирования и управления может перемещаться по поверхности объекта. Отраженный сигнал, улавливаемый сфокусированным пучком, поступает в приемник, усиливается и проходит в блок оценки ЭПР, который вычисляет значение ЭПР локальных центров отражения путем сравнения с эталонным сигналом, введенным в память блока. Мешающие отражения от посторонних предметов (опор и устройства вращения объекта) компенсируются с помощью части сигнала, подаваемого от передатчика на вход приемника через блок компенсации, в котором подбирается амплитуда и фаза этого сигнала.

На фиг.1 представлена структурная схема устройства для измерения ЭПР объектов. На фиг.2 представлен алгоритм работы блока оценки ЭПР.

Устройство для измерения ЭПР объектов (см. фиг.1) содержит передатчик 1, передающую часть приемо-передающей антенны 2, приемную часть приемо-передающей антенны 3, приемник 4, блок оценки ЭПР 5, блок компенсации 6 и блок формирования и управления ДН приемной части антенны 7. Передатчик 1 соединен с передающей частью антенны 2, приемная часть антенны 3 подключена к приемнику 4, выход приемника 4 соединен с блоком оценки ЭПР 5, выход которого подключен к блоку компенсации 6, к входу этого блока подсоединен второй выход передатчика 1. Выход блока компенсации 6 подсоединен к приемнику 4. Вторые вход и выход блока оценки ЭПР 5 соединены соответственно с выходом и входом блока формирования и управления ДН приемной части антенны 7, а второй выход которого подключен к входу приемной части антенны.

Устройство для измерения ЭПР объектов может быть выполнено с использованием следующих функциональных элементов.

Передатчик 1 - импульсного типа (Справочник по основам радиолокационной техники. - М., 1967, с.278).

Приемо-передающая антенна 2 - фазированная антенная решетка с электронным сканированием по обеим угловым координатам сфокусирована на расстояние 15 метров с углом сканирования 40°. Антенная решетка состоит из 2850 элементов, представляющих конические спиральные антенны, расположенных по поверхности шарового сегмента диаметром 3 м, радиусом 15 м. Из всего количества элементов 567 (1/5) работают на передачу, а остальные на прием. Радиус шарового сегмента 15 м выбран из условия упрощения фокусировки на малые расстояния.

Элементы антенной решетки, представляющие конические спирали, имеют различные направления намотки спирали на передачу и на прием для увеличения развязки.

Приемо-передающая антенна рассчитывается для работы в диапазоне от 3 до 10 см. Предельная фокусировка пучка определяется по формуле

где d - диаметр сфокусированного пучка;

F - фокусное расстояние;

λ - длина волны;

Д - диаметр антенной решетки.

Вычисления показывают, что при F=15 метров, λ=0,1 метра и Д=3 метра диаметр пучка равен 0,5 метра. При тех же условиях и при λ=0,032 метра диаметр пучка равен 0,16 метра. Это является достаточным для проведения детального исследования рассеивающих свойств поверхности объектов.

Приемник 4 - широкополосный прямого усиления.

Блок оценки ЭПР 5 - персональная ЭВМ типа IBM.

Перед проведением измерений (см. фиг.2), исходя из размеров рабочей зоны и диаметра пучка, для заданной длины волны вычисляется матрица фазовых сдвигов М, обеспечивающих фокусирование луча. Число строк матрицы М равно количеству приемных элементов решетки, а число столбцов равно количеству элементов разрешения в рабочем объеме. Данная матрица вычисляется один раз и хранится на жестком диске ЭВМ блока оценки ЭПР.

Затем блок оценки ЭПР выдает соответствующие фазовые сдвиги на фазовращатели блока формирования и управления ДН приемной части антенны и проводится последовательная фокусировка луча на каждый элемент разрешения в рабочем объеме. Измеренные сигналы поступают в приемник 4, усиливаются и записываются в ЭВМ блока оценки ЭПР. В результате формируются значения остаточного фона элементов рабочего объема.

В рабочий объем помещается тестовый объект с известной ЭПР, например металлическая сфера. Проводится фокусировка луча на этот объект. Отраженный тестовым объектом сигнал поступает в приемник. В блоке оценки ЭПР из памяти считывается значение остаточного фона для того же элемента рабочего объема. В соответствии с этим значением на фазовращатель и аттенюатор блока компенсации поступают управляющие сигналы, которые обеспечивают поступление от передатчика 1 в приемник 4 сигнала, необходимого для компенсации остаточных фоновых отражений в рабочем объеме. С выхода приемника в блок оценки ЭПР поступает калибровочное значение ЭПР для заданного положения тестового объекта. Подобная процедура повторяется для совокупности положений тестового объекта, в результате формируется и записывается в ЭВМ калибровочная зависимостью ЭПР.

В рабочий объем помещается исследуемый объект. Проводится последовательная фокусировка луча на каждый элемент рабочего объема. Измеренный сигнал поступает в приемник. В блоке оценки ЭПР из памяти считывается значение остаточного фона для того же элемента рабочего объема. В соответствии с этим значением на фазовращатель и аттенюатор блока компенсации поступают управляющие сигналы, которые обеспечивают поступление от передатчика 1 в приемник 4 сигнала, необходимого для компенсации остаточных фоновых отражений в рабочем объеме. В блоке оценки ЭПР сигнал, поступающий с выхода приемника, сравнивается с калибровочной зависимостью и в результате определяется ЭПР элемента объекта.

Блок компенсации 6 - состоит из одного фазовращателя и одного аттенюатора, которые управляются электрически.

Блок формирования и управления ДН приемной части антенны 7 состоит из 2283 полупроводниковых фазовращателей (Антенны и устройства СВЧ. /Под ред. Д.И.Воскресенского - М.: Радио и связь, 1994, с.348-356).

Устройство для измерения ЭПР объектов работает следующим образом.

Передатчик 1 формирует зондирующий сигнал, который через передающую часть антенны 2 излучается в направлении объекта и путем соответствующей настройки 1/5 части элементов антенны облучает объект плоским полем. Отраженный сигнал принимается приемной частью антенны 3, которая имеет сужающуюся в узкий пучок ДН и перемещающуюся по поверхности объекта, с помощью блока формирования и управления ДН приемной части антенны 7, который получает команды из блока оценки ЭПР 5. Сигнал поступает на вход приемника 4, усиливается и проходит в блок оценки ЭПР 5, который вычисляет значение ЭПР локальных центров отражения путем сравнения с эталонным сигналом, введенным (заложенным) в память блока 5. Мешающие отражения от посторонних предметов (опор и устройство вращения объекта) предварительно записываются в результате обзора пространства измерений и запоминаются в блоке оценки ЭПР 5, а затем с помощью блока компенсации 6 подаются в противофазе с соответствующей амплитудой от передатчика 1 на вход приемника 4.

Устройство для измерения эффективной поверхности рассеяния (ЭПР) объектов, содержащее передатчик, приемопередающую антенну, приемник и блок оценки ЭПР, отличающееся тем, что приемопередающая антенна выполнена в виде фазированной антенной решетки, состоящей из n элементов, причем одна пятая часть элементов соединена параллельно и подключена к выходу зондирующего сигнала передатчика, а остальные элементы, являющиеся приемной частью приемопередающей антенны, соединены с учетом возможности фазирования сигналов, и подключены к входу приемника для приема отраженных сигналов, кроме того, дополнительно введены блок компенсации остаточных фоновых отражений и блок формирования и управления диаграммой направленности (ДН), причем выход приемника соединен с блоком оценки ЭПР для сравнения сигнала приемника с эталонным сигналом, введенным в память блока оценки ЭПР, и определения ЭПР элемента объекта, выход управляющего сигнала блока оценки ЭПР подключен к входу блока компенсации остаточных фоновых отражений для обеспечения поступления в противофазе с соответствующей амплитудой сигнала с второго выхода передатчика, подключенного к указанному блоку компенсации, на вход приемника, подключенного к выходу указанного блока компенсации, при этом вход блока формирования и управления ДН соединен с выходом сигнала команд блока оценки ЭПР, выход блока формирования и управления ДН соединен со входом введения в память блока оценки ЭПР, второй выход блока управления и формирования ДН подключен к входу приемной части приемопередающей антенны.



 

Похожие патенты:

Изобретение относится к области радиолокации, а именно к имитаторам сигналов, отраженных от береговой линии, на выходе приемника обзорной корабельной РЛС, и может быть использовано для обучения и тренировки операторов РЛС и устройств обработки радиолокационной информации действиям по идентификации береговой линии с морской картой при плавании судна в наиболее навигационно-опасных районах, таких как узкость, проливная зона или вдоль линии берега выбранного района судоходства.

Изобретение относится к учебным приборам и тренажерам по радиотехнике и может использоваться для наглядной демонстрации различных режимов. .

Изобретение относится к средствам для контроля параметров радиотехнических устройств и может быть использовано при контроле самолетного радиолокатора, устанавливаемого на самолете-перехватчике, при переходе радиолокатора из режима обзора передней полусферы в режим захвата цели.

Изобретение относится к области радиотехники, в частности к средствам имитации радиосигналов источников радиоизлучений (ИРИ), и может быть использовано при разработке и испытаниях систем и средств радиосвязи, радиоконтроля, при отработке решения прикладных задач местоопределения ИРИ по принятым прямому и ретранслированному сигналам, а также при обучении операторов указанных систем.

Изобретение относится к калибровке многоканальной радиолокационной антенны в ракете во время полета. .

Изобретение относится к области радиолокации, в частности к устройствам приема радиолокационных сигналов, и может быть использовано, например, в информационных каналах системы управления беспилотными летательными аппаратами.

Изобретение относится к радиотехнике и может быть использовано для пассивного обнаружения источников радиоизлучений и измерения направления на источник излучения и частоты излучаемых сигналов.

Изобретение относится к радиотехнике и может быть использовано в компьютерных измерительных системах декаметрового диапазона волн для совершенствования технологии формирования базы калибровочных данных, основанной на комбинации измерений, выполняемых на реальной подвижной платформе (самолете, корабле и т.д.) и ее модели.

Изобретение относится к электронным цепям приемников, используемых в Глобальной Системе Определения Местоположения Абонента. .

Изобретение относится к технике радиоизмерений и может быть использовано при определении уровней электромагнитного излучения (ЭМИ), создаваемого радиоэлектронными средствами различного назначения в полосе частот, включающей промышленную частоту 50 Гц.

Изобретение относится к технике радиоизмерений и может быть использовано при определении уровней электромагнитного излучения (ЭМИ), создаваемого радиоэлектронными средствами различного назначения в полосе частот, включающей промышленную частоту 50 Гц.

Изобретение относится к технике радиоизмерений и может быть использовано при определении уровней электромагнитного излучения (ЭМИ), создаваемого радиоэлектронными средствами различного назначения в полосе частот, включающей промышленную частоту 50 Гц.

Изобретение относится к газоразрядной электроизмерительной технике и может быть, в частности, использовано для получения объективных данных при осуществлении биолокации.

Изобретение относится к радиолокации и может использоваться в качестве эталонного радиолокационного отражателя с известной эффективной поверхностью рассеяния (ЭПР) при радиолокационных измерениях, а также как пассивный маяк, в условиях сильных мешающих отражений от близкорасположенных предметов и подстилающей поверхности.

Изобретение относится к радиотехнике и может быть использовано для измерения обнаруженных излучений маломощных радиопередающих устройств СВЧ диапазона. .

Изобретение относится к области радиолокации и предназначено для измерения радиолокационных характеристик объектов, обладающих "нелинейными" электромагнитными свойствами.

Изобретение относится к измерительной технике, в частности к устройствам контроля тока, протекающего через тело человека, индуцированного электрическим полем промышленной частоты, и может быть использовано для индивидуального учета уровня воздействия электрического поля на организм человека.
Изобретение относится к отрасли радиоизмерений и предназначено для проверки и демонстрации работоспособности приборов и других устройств энергетического воздействия на биообъект, материалы и среду, например, “Гамма-7” - активаторов, нейтрализаторов и других (разработчики: Московский центр информатики “Гамма-7”, Московский институт информационно-волновых технологий).
Наверх