Поверхностный конденсатор

Изобретение относится к турбиностроению и может быть использовано в разработках новых конструкций, преимущественно крупногабаритных высоконагруженных конденсаторов паровых турбин. Поверхностный конденсатор включает коробчатый корпус с плоскими стенками, трубные пучки системы охлаждения и конденсации пара, расположенные вертикально навстречу потоку пара выхлопа из турбины с образованием между пучками трубок каналов для прохода пара, при этом в каждом трубном пучке симметрично в верхней и нижней его частях со стороны выхода из турбины и со стороны днища конденсатора выполнены вертикальные каналы для прохода пара. Изобретение позволяет существенно повысить эффективность и экономичность конденсатора. 1 ил.

 

Изобретение относится к области теплоэнергетики, к турбиностроению, и может быть использовано в разработках новых конструкций, преимущественно крупногабаритных высоконагруженных конденсаторов паровых турбин.

Поверхностный конденсатор является одним из ответственных узлов паротурбинной установки, это - крупногабаритный теплообменник, от совершенства конструкции которого во многом может зависеть конструктивный профиль, компоновка, экономичность турбоагрегата.

Известен конденсатор с трубным пучком ленточной формы, не модульный, не глубокий, пучки расположены не вертикально, между участками пучка имеются каналы для прохода пара, габариты 'конденсатора небольшие, корпус - цилиндрической или округлой формы. Применяется для конденсаторов турбин с относительно небольшой нагрузкой выхлопа, небольшими скоростями входа пара в трубную систему (Шляхин П.Н. Паровые и газовые турбины. - М.: Энергия. 1974, С.182-183, Рис.12-20, 12-21).

Недостатками известного устройства являются разреженность пучка, невысокий, так называемый, «коэффициент заполнения» трубной доски, а для высоконагруженных по расходу пара конденсаторов желательно иметь большой процент заполнения площади трубной доски трубным пучком, кроме того, невертикальная форма пучка неудобна для размещения трубной системы в корпусе коробчатой формы, тем более, если по техническим соображениям трубную систему вынужденно приходится компоновать из нескольких частей (блоков), ограниченных, в частности, требованиями провоза блока по железной дороге.

Известен поверхностный конденсатор, преимущественно для паровой турбины, включающий коробчатый корпус с плоскими стенками, трубные пучки трубной системы конденсации пара, ориентированные вертикально навстречу потоку пара выхлопа из турбины, при этом контуры трубных пучков скомпонованы так, что между ними, между пучками и стенками корпуса, образованы каналы для прохода пара, проходящие на всю высоту пучков, сужаясь к дну корпуса конденсатора (SU 616516, МПК: F28В 1/02, F28F 9/02, опубликовано 12.06.78).

По совокупности признаков это известное техническое решение является наиболее близким к заявляемому и принято за прототип.

Недостатком устройства, принятого за прототип, а также причиной, препятствующей достижению желаемого технического результата при использовании упомянутого известного устройства, является то, что при относительно большой глубине конденсатора и повышенном проценте заполнения площади трубных досок возрастают скорости пара в проходах между пучками, возрастает гидравлическое сопротивление конденсатора.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, а также выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил технического решения, характеризующегося признаками, тождественными или эквивалентными предлагаемым. При этом предлагаемое изобретение не вытекает явным для специалиста образом из известного уровня техники и определенного заявителем.

Определение из выявленных аналогов прототипа как наиболее близкого технического решения по совокупности признаков позволило выявить в заявленном устройстве совокупность существенных отличительных признаков по отношению к рассматриваемому заявителем техническому результату, изложенную в нижеприведенной формуле изобретения.

Заявляемое техническое решение позволяет существенно уменьшить локальные скорости пара на входе в трубный пучок, и, соответственно, гидравлическое сопротивление конденсатора. Выполнение вертикальных каналов для прохода пара в нижней части трубных пучков улучшает теплообмен в них. При этом конденсируемый пар, проходя к каналам нижней части пучков, своим теплом препятствует переохлаждению конденсатора и способствует более эффективному выделению и удалению воздуха из конденсата. Предлагаемое конструктивное решение позволяет существенно повысить эффективность и экономичность конденсатора.

Предложен поверхностный конденсатор, включающий коробчатый корпус с плоскими стенками, трубные пучки системы охлаждения и конденсации пара, расположенные вертикально навстречу потоку пара выхлопа из турбины с образованием между пучками трубок каналов для прохода пара, при этом в каждом трубном пучке симметрично в верхней и нижней его частях со стороны выхода из турбины и со стороны днища конденсатора выполнены вертикальные каналы для прохода пара.

Изобретение иллюстрируется чертежом.

Поверхностный конденсатор включает коробчатый корпус 1 с плоскими вертикальными стенками 2, присоединенный к цилиндру низкого давления турбины переходным патрубком 3. В корпусе 1 расположены трубные пучки 4 системы охлаждения и конденсации пара, включающие верхнюю 5 и нижнюю 6 части, расположенные вертикально навстречу потоку пара выхлопа из турбины. Между соседними пучками 4, а также между крайним пучком и стенкой 2 корпуса 1 конденсатора выполнены каналы 7 для прохода пара. В верхней части 5 каждого пучка 4 со стороны переходного патрубка 3 выполнены вертикальные каналы 8 для прохода пара к середине пучка 4. В нижней части 6 пучка 4 выполнены вертикальные каналы 9 для прохода пара со стороны пространства 10 между пучками 4 и днищем конденсатора 11, которое соединено каналами 7 с полостью переходного патрубка 3. В середине пучка 4 между его верхней 5 и нижней 6 частями установлен трубопровод отсоса паровоздушной смеси 12.

Во время работы турбины пар из выхлопного патрубка части низкого давления поступает через переходной патрубок 3 в корпус 1 трубной системы, попадает через каналы 7 и 8 на трубки верхней части 5 трубных пучков 4, и через каналы 7, придонное пространство 11 и каналы 9 - на трубки нижней части 6 трубного пучка 4, конденсируется на них, а неконденсируемые газы, выделяющиеся при этом из пара, отсасываются из конденсатора через трубопровод воздухоотсоса 12 с помощью эжектора. Благодаря выполненным вертикальным каналам 8 и 9, прорезающим трубные пучки 4, уменьшаются локальные скорости пара на входе в трубный пучок 4 (большой периметр входа), соответственно, уменьшается гидравлическое сопротивление конденсатора. Кроме того, благодаря выполненным каналам 9 улучшается теплообмен в нижней части 6 трубных пучков 4. При этом конденсируемый пар, проходя к каналам 9 нижней части пучков 4 через придонное пространство 11, своим теплом препятствует переохлаждению конденсатора и способствует более эффективному выделению и удалению воздуха из конденсата.

Поверхностный конденсатор, включающий коробчатый корпус с плоскими стенками, трубные пучки системы охлаждения и конденсации пара, расположенные вертикально навстречу потоку пара выхлопа из турбины с образованием между пучками трубок каналов для прохода пара, отличающийся тем, что в каждом трубном пучке симметрично в верхней и нижней его частях со стороны выхода из турбины и со стороны днища конденсатора выполнены вертикальные каналы для прохода пара.



 

Похожие патенты:

Изобретение относится к конденсатору с воздушным охлаждением. .

Изобретение относится к теплообменной аппаратуре, позволяет интенсифицировать теплообмен и может быть использовано в энергетической промышленности. .

Изобретение относится к области энергетики и может быть использовано в системах охлаждения конденсаторов ТЭС и АЭС. .

Изобретение относится к теплоэнергетике , а именно к эксплуатации конденсационных установок паровых турбин, оснащенных водоструйными эжекторами для отсоса воздуха.

Изобретение относится к теплоэнеоге тике и может быть использовано для деаэр|- ции воды в конденсаторах. .

Изобретение относится к энергетике и может быть использовано при эксплуатации паротурбинных установок. .

Изобретение относится к паровым конденсаторам паротурбинных энергоустановок. .

Изобретение относится к способу и устройству очистки выбросов предприятий в атмосферу от загрязняющих веществ. .

Изобретение относится к устройствам оборотного водоснабжения, использующим тепловую энергию дефлегматорной воды для нужд производства и быта спиртопроизводящего предприятия.

Изобретение относится к области энергетики, к турбиностроению, и может быть использовано при создании конденсаторов для паровых турбин. .

Изобретение относится к холодильной технике. .

Изобретение относится к теплообменным аппаратам холодильных установок. .

Изобретение относится к теплоэнергетике и может быть использовано в установках подогрева воды для отопления и/или горячего водоснабжения зданий и сооружений децентрализованным образом.

Изобретение относится к эксплуатации теплоэнергетического оборудования атомной электростанции и может быть использовано в системе циркуляционного водоснабжения турбин тепловых электростанций.

Группа изобретений относится к пищевой, химической, фармацевтической промышленности и может быть использовано, в частности, для разделения газопаровых смесей в сублимационных сушильных установках. Способ десублимационного фракционирования многокомпонентной системы включает подачу газопаровой смеси и хладагента для охлаждения поверхности десублимации с последующим удалением десублимата. Для охлаждения поверхности десублимации используют буферную жидкость, представляющую собой жидкость с низкой температурой замерзания, передающую теплоту от газопаровой смеси к хладагенту, в качестве которой используют, например, водный раствор этиленгликоля, причем концентрацию буферной жидкости в растворе подбирают таким образом, чтобы проходя через каскад десублиматоров температура ее замерзания в каждом десублиматоре была ниже, чем в предыдущем по ходу движения газопаровой смеси. Технический результат - разделение многокомпонентной системы на отдельные фракции в каскаде десублиматоров и упрощение процесса регулирования температуры в отдельных десублиматорах при вымораживании компонентов с использованием низкокипящего хладагента. 2 н.п. ф-лы, 3 ил.
Наверх