Способ получения l-аминокислот с использованием бактерии, принадлежащей к роду escherichia, в которой инактивирован ген bola

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина или L-аргинина с использованием бактерии рода Escherichia, которая модифицирована таким образом, что ген bolA в указанной бактерии инактивирован. Изобретение позволяет получать L-треонин или L-аргинин с высокой степенью эффективности. 2 н. и 1 з.п. ф-лы, 2 ил., 3 табл.

 

Область техники

Настоящее изобретение относится к микробиологической промышленности, в частности к способу получения L-аминокислоты с использованием бактерии семейства Enterobacteriaceae, модифицированной таким образом, что экспрессия гена bolA в указанной бактерии ослаблена.

Описание предшествующего уровня техники

Регулятор транскрипции BolA является позитивным транскрипционным регулятором морфогенеза. Он принадлежит к семейству BolA/YrbA и участвует в контроле нескольких генов, участвующих в ответе клетки на окислительный стресс, кислотный стресс, тепловой шок, осмотический шок и голодание по углероду. Было показано, что природные клетки в стационарной фазе приобретают сферическую форму, в то время как клетки-мутанты по rpoS сохраняют форму палочек и обычно крупнее. Уменьшение размера клеток Е.coli по мере роста - это непрерывный и как минимум двухфазный процесс, при этом вторая фаза отсутствует у клеток с неактивным rpoS-геном и коррелирует с индукцией морфогена bolA в природных клетках (Lange, R. and Hengge-Aronis, R., J. Bacteriol., 173, 14, 4474-4481 (1991)).

Также было показано, что морфоген стационарной фазы bolA из Escherichia coli индуцируется стрессом во время ранних стадий роста. Значительное повышение уровней bolAlp mRNA также отмечается в результате теплового шока, кислотного стресса и окислительного стресса, которые, как было показано, ингибируют трансляцию σs. При внезапном углеродном голодании и осмотическом шоке клетки меняют свою морфологию и напоминают своим внешним видом клетки, в которых bolA избыточно экспрессировался в стационарной фазе (Santos, J.M. et al, Mol. Microbiol. 32(4), 789-798 (1999)).

Также было показано, что повышенная экспрессия гена bolA в стационарной фазе инициирует образование осмотически устойчивых круглых клеток и при неблагоприятных условиях роста ген bolA необходим для нормальной клеточной морфологии в стационарной фазе во время голодания. Во время фазы экспоненциального роста ген bolA обеспечивает круглую форму клеток посредством механизма, который жестко зависит от двух основных D, D-карбоксипептидаз из Escherichia coli, PBP5 и РВР6. Ген bolA контролирует уровни транскрипции dacA (PBP5), dacC (РВР6) и ampC (AmpC), β-лактамаз класса С, изначально соединяясь, таким образом, с пенициллин-связывающими белками (PBPs) и β-лактамазами на уровне регуляции гена. Более того, показано, что РВР5 и РВР6 регулируются независимо и оказывают различное влияние на слой пептидогликанов. Было доказано, что ген bolA является регулятором ферментов биосинтеза клеточной стенки, при этом ферменты выполняют различные роли в формировании клеточной морфологии и делении клеток (Santos, J.M. et al, Mol. Microbiol. 45(6), 1729-40 (2002)).

Но в настоящее время нет сообщений, описывающих использование инактивации гена bolA для получения L-аминокислот.

Описание изобретения

Целями настоящего изобретения являются повышение продуктивности штаммов-продуцентов L-аминокислоты и предоставление способа получения L-аминокислоты с использованием этих штаммов.

Вышеупомянутые цели были достигнуты путем установления того факта, что инактивация гена bolA может привести к повышению продукции L-аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.

Настоящее изобретение предоставляет бактерию семейства Enterobacteriaceae, обладающую способностью к повышенной продукции аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.

Целью настоящего изобретения является предоставление описанной выше бактерии, модифицированной таким образом, что экспрессия гена bolA в указанной бактерии ослаблена.

Также целью настоящего изобретения является предоставление описанной выше бактерии, в которой ослабление экспрессии гена bolA осуществлено благодаря инактивации гена bolA.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Escherichia.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Pantoea.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспартата, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.

Также целью настоящего изобретения является предоставление способа получения L-аминокислоты, который включает в себя:

- выращивание описанной выше бактерии в питательной среде с целью продукции и накопления L-аминокислоты в питательной среде и

- и выделение указанной L-аминокислоты из культуральной жидкости.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспартата, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.

Более детально настоящее изобретение описано ниже.

1. Бактерия согласно настоящему изобретению

Бактерия согласно настоящему изобретению - это бактерия - продуцент L-аминокислоты семейства Enterobacteriaceae, модифицированная таким образом, что экспрессия гена bolA в указанной бактерии была ослаблена.

Согласно настоящему изобретению «бактерия - продуцент L-аминокислоты» означает бактерию, обладающую способностью к продукции и выделению L-аминокислоты в питательную среду, когда бактерия согласно настоящему изобретению выращивается в указанной питательной среде.

Используемый здесь термин «бактерия-продуцент L-аминокислоты» также означает бактерию, которая способна к продукции L-аминокислоты и вызывает накопление L-аминокислоты в ферментационной среде в больших количествах по сравнению с природным или родительским штаммом Е.coli, таким как штамм Е.coli К-12, и предпочтительно означает, что указанный микроорганизм способен накапливать в среде целевую L-аминокислоту в количестве не менее чем 0.5 г/л, более предпочтительно не менее чем 1.0 г/л. Термин "L-аминокислота" включает в себя L-аланин, L-аргинин, L-аспарагин, L-аспартат, L-цистеин, L-глутаминовую кислоту, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин и L-валин.

Термин "ароматическая L-аминокислота" включает в себя L-фенилаланин, L-тирозин и L-триптофан. Термин "неароматическая L-аминокислота" включает в себя L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-аспарагин, L-аспартат, L-глутамин, L-глутаминовую кислоту, L-пролин и L-аргинин. Неароматические аминокислоты предпочтительны, и L-треонин, L-лизин, L-цистеин, L-лейцин, L-глутамин, L-глутаминовая кислота, L-пролин и L-аргинин наиболее предпочтительны.

Семейство Enterobacteriaceae включает в себя бактерии, принадлежащие к родам Escherichia, Enterobacter, Erwinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, Yersinia и т.д. Более конкретно, могут быть использованы бактерии, классифицируемые как принадлежащие к семейству Enterobacteriaceae в соответствии с таксономией, используемой в базе данных NCBI (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/htbinpost/Taxonomy/wgetorg?mode=Tree&id=1236&lvl=3&keep=1&srchmode=1&unlock). Бактерия, принадлежащая к родам Escherichia или Pantoea, предпочтительна.

Термин «бактерия, принадлежащая к роду Escherichia» означает, что бактерия относится к роду Escherichia в соответствии с классификацией, известной специалисту в области микробиологии. В качестве примера микроорганизма, принадлежащего к роду Escherichia, использованного в настоящем изобретении, может быть упомянута бактерия Escherichia coli (E.coli).

Круг бактерий, принадлежащих к роду Escherichia, которые могут быть использованы в настоящем изобретении, не ограничен каким-либо образом, однако, например, бактерии, описанные в книге Neidhardt, F.C. et al. (Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington D.C., 1208, Таблица 1), могут быть включены в число бактерий согласно настоящему изобретению.

Термин «бактерия, принадлежащая к роду Pantoea» означает, что бактерия относится к роду Pantoea в соответствии с классификацией, известной специалисту в области микробиологии. Недавно несколько видов Enterobacter agglomerans были классифицированы как Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii или подобные им на основе анализа нуклеотидной последовательности 16S рРНК и т.д.

Термин "бактерия была модифицирована таким образом, что экспрессия гена bolA ослаблена" означает, что указанная бактерия была модифицирована таким образом, что в результате модификации такая бактерия содержит пониженное количество белка BolA по сравнению с немодифицированной бактерией, или указанная бактерия неспособна синтезировать белок BolA.

Термин "инактивация гена bolA" означает, что указанный модифицированный ген модифицирован таким образом, что такой модифицированный ген или оперон кодирует полностью неактивный белок. Также возможно, что естественная экспрессия модифицированного участка ДНК невозможна из-за делеции целевого гена или его части, сдвига рамки считывания данного гена или введения missense/nonsense мутации или модификации прилегающей к гену областей, которые включают последовательности, контролирующие экспрессию гена, такие как промотор(ы), энхансер(ы), аттенуатор(ы), сайт(ы) связывания рибосомы и т.д.

Уровень экспрессии гена можно оценить путем измерения количества мРНК, транскрибируемого с целевого гена, с использованием различных известных методик, включая гибридизацию по Нозерну (Northern blotting), количественный ПЦР обратной транскрипции (RT-PCR) и подобные им. Количество белка, кодируемого данным геном, может быть измерено с помощью известных методов, включающих метод SDS-PAGE с последующим иммуноблотингом (Western blotting) и подобные им.

Ген bolA кодирует транскрипционный активатор морфогенеза. Ген bolA (номера нуклеотидов с 453663 по 454013 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank; gi:49175990; SEQ ID NO: 1) расположен на хромосоме штамма Е.coli К-12 между открытой рамкой считывания yajG и геном tig. Нуклеотидная последовательность гена bolA и соответствующая ей аминокислотная последовательность белка BolA приведены в Списке последовательностей под номерами 1 (SEQ ID NO:1) и 2 (SEQ ID NO:2) соответственно.

Поскольку у представителей различных родов и штаммов семейства Enterobacteriaceae возможны некоторые вариации в нуклеотидных последовательностях, понятие инактивируемого гена bolA не ограничивается геном, последовательность которого приведена в Списке последовательностей под номером 1 (SEQ ID NO:1), но также может включать и гомологичные ему гены. Таким образом, вариант белка, кодируемого геном bolA, может быть представлен белком с гомологией не менее 80%, предпочтительно не менее 90% и наиболее предпочтительно не менее 95% по отношению к полной аминокислотной последовательности, приведенной в Списке последовательностей под номером 2 (SEQ ID NO.2), при условии, что активность BolA белка к активации морфогенеза сохраняется.

Кроме того, ген bolA может быть представлен вариантом, который гибридизуется с нуклеотидной последовательностью, приведенной в Списке последовательностей под номером 1 (SEQ ID NO:1), или с зондом, который может быть синтезирован на основе указанной нуклеотидной последовательности, в жестких условиях при условии, что указанный вариант кодирует функциональный BolA белок. "Жесткие условия" включают такие условия, при которых специфические гибриды образуются, а неспецифические гибриды - не образуются. Практическим примером жестких условий является однократная отмывка, предпочтительно двух- или трехкратная при концентрации солей, соответствующей стандартным условиям отмывки при гибридизации по Саузерну, например 1×SSC, 0.1% SDS, предпочтительно 0.1×SSC, 0.1% SDS при 60°С. Длина зонда может быть выбрана в зависимости от условий гибридизации, обычно она составляет от 100 п.о. до 1 т.п.о.

Инактивация указанного гена может быть произведена традиционными методами, такими как мутагенез с использованием УФ-излучения или обработка нитрозогуанидином (N-метил-N'-нитро-N-нитрозогуанидин), сайт-направленный мутагенез, инактивация гена с помощью гомологичной рекомбинации, или/и инсерционно-делеционного мутагенеза (Yu, D. et al., Proc. Natl. Acad. Sci. USA, 2000, 97:12: 5978-83) и (Datsenko K.A. and Wanner B.L., Proc. Natl. Acad. Sci. USA, 2000, 97:12: 6640-45), так же называемого "Red-зависимой интеграцией".

Наличие активности белка BolA может быть обнаружено путем комплементации мутации bolA- и наблюдения за формой клеток в стационарной фазе роста клеток. Таким образом, снижение или отсутствие активности белка BolA в бактерии согласно настоящему изобретению может быть определено путем сравнения указанной бактерии с родительской немодифицированной бактерией.

Методами получения плазмидной ДНК, разрезания и лигирования ДНК, трансформации, выбора олигонуклеотидов в качестве праймеров и подобные им могут являться обычные методы, хорошо известные специалисту в данной области. Эти методы описаны, например, в книге Sambrook, J., Fritsch, E.F., and Maniatis, Т., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989).

Бактерия - продуцент L-аминокислоты

В качестве бактерии согласно настоящему изобретению, модифицированной таким образом, что экспрессия гена bolA ослаблена, может быть использована бактерия, способная к продукции L-ароматической или L-неароматической аминокислоты.

Бактерия согласно настоящему изобретению может быть получена путем инактивации гена bolA в бактерии, уже обладающей способностью к продукции L-аминокислот. С другой стороны, бактерия согласно настоящему изобретению может быть получена путем придания бактерии, в которой ген bolA уже инактивирован, способности к продукции L-аминокислот.

Бактерия - продуцент L-треонина

Примеры родительского штамма для получения бактерии-продуцента L-треонина согласно настоящему изобретению включают, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е.coli TDH-6/pVIC40 (ВКПМ В-3996) (патенты США 5175107 и 5705371), штамм Е.coli NRRL-21593 (патент США 5939307), штамм Е.coli FERM ВР-3756 (патент США 5474918), штаммы Е.coli FERM ВР-3519 и FERM BP-3520 (патент США 5376538), штамм Е.coli MG442 (Гусятинер и др., Генетика, 14, 947-956 (1978)), штаммы Е.coli VL643 и VL2055 (Европейская патентная заявка ЕР1149911 А) и подобными им.

Штамм TDH-6 является дефицитным по гену thrC, способен ассимилировать сахарозу и содержит ген ilvA с мутацией типа "leaky". Указанный штамм содержит мутацию в гене rhtA, которая обусловливает устойчивость к высоким концентрациям треонина и гомосерина. Штамм В-3996 содержит плазмиду pVIC40, которая была получена путем введения в вектор, производный от вектора RSF1010, оперона thrA*BC, включающего мутантный ген thrA, кодирующий аспартокиназа-гомосериндегидрогеназу I, у которой существенно снижена чувствительность к ингибированию треонином по типу обратной связи. Штамм В-3996 был депонирован 19 ноября 1987 года во Всесоюзном научном центре антибиотиков (РФ, 113105 Москва, Нагатинская ул., 3-А) с инвентарным номером РИА 1867. Указанный штамм также был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (РФ, 113545 Москва, 1-й Дорожный проезд, 1) с инвентарным номером В-3996.

Предпочтительно, чтобы бактерия согласно настоящему изобретению была далее модифицирована таким образом, чтобы иметь повышенную экспрессию одного или нескольких следующих генов:

- мутантного гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи;

- гена thrB, кодирующего гомосеринкиназу;

- гена thrC, кодирующего треонинсинтазу;

- гена rhtA, предположительно кодирующего трансмембранный белок;

- гена asd, кодирующего аспартат-β-семиальдегиддегидрогеназу, и

- гена aspC, кодирующего аспартатаминотрансферазу (аспартаттрансаминазу).

Последовательность гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I из Escherichia coli, известна (номера нуклеотидов с 337 по 2799 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrA расположен на хромосоме штамма Е.coli K-12 между генами thrL и thrB. Последовательность гена thrB, кодирующего гомосеринкиназу из Escherichia coli, известна (номера нуклеотидов с 2801 по 3733 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrB расположен на хромосоме штамма Е.coli K-12 между генами thrA и thrC. Последовательность гена thrC, кодирующего треонинсинтазу из Escherichia coli, известна (номера нуклеотидов с 3734 по 5020 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrC расположен на хромосоме штамма Е.coli K-12 между геном thrB и открытой рамкой считывания уааХ. Все три указанных гена функционируют как один треониновый оперон.

Мутантный ген thrA, кодирующий аспартокиназу-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи, так же, как и гены thrB и thrC, может быть получен в виде единого оперона из хорошо известной плазмиды pVIC40, которая представлена в штамме-продуценте Е.coli ВКПМ В-3996. Плазмида pVIC40 подробно описана в патенте США 5705371.

Ген rhtA расположен на 18 минуте хромосомы Е.coli около оперона glnHPQ, который кодирует компоненты транспортной системы глутамина, ген rhtA идентичен ORF1 (ген ybiF, номера нуклеотидов с 764 по 1651 в последовательности с инвентарным номером ААА218541 в базе данных GenBank, gi:440181), расположен между генами рехВ и ompX. Участок ДНК, экспрессирующийся с образованием белка, кодируемого рамкой считывания ORF1, был назван геном rhtA (rht: resistance to homoserine and threonine). Также было показано, что мутация rhtA23 представляет собой замену А-на-G в положении -1 по отношению к старт-кодону ATG (ABSTRACTS of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).

Нуклеотидная последовательность гена asd из E.coli известна (номера нуклеотидов с 3572511 по 3571408 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi: 16131307) и может быть получена с помощью ПЦР (полимеразная цепная реакция; ссылка на White, T.J. et al., Trends Genet., 5, 185 (1989)) с использованием праймеров, синтезированных на основе нуклеотидной последовательности указанного гена. Гены asd из других микроорганизмов могут быть получены сходным образом.

Также нуклеотидная последовательность гена aspC из Е.coli известна (номера нуклеотидов с 983742 по 984932 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi:16128895) и может быть получена с помощью ПЦР. Гены aspC из других микроорганизмов могут быть получены сходным образом.

Бактерия - продуцент L-лизина

Примеры бактерий-продуцентов L-лизина, принадлежащих к роду Escherichia, включают мутанты, обладающие устойчивостью к аналогу L-лизина. Аналог L-лизина ингибирует рост бактерий, принадлежащих к роду Escherichia, но это ингибирование полностью или частично снимается, когда в среде также присутствует L-лизин. Примеры аналога L-лизина включают, но не ограничиваются оксализином, лизингидроксаматом, S-(2-аминоэтил)-L-цистеином (АЕС), γ-метиллизином, α-хлорокапролактамом и так далее. Мутанты, обладающие устойчивостью к указанным аналогам лизина, могут быть получены путем обработки бактерий, принадлежащих к роду Escherichia, традиционными мутагенами. Конкретные примеры бактериальных штаммов, используемых для получения L-лизина, включают штамм Escherichia coli AJ11442 (FERM BP-1543, NRRL В-12185; смотри патент США 4346170) и штамм Escherichia coli VL611. В этих микроорганизмах аспартокиназа устойчива к ингибированию L-лизином по принципу обратной связи.

Штамм WC 196 может быть использован в качестве бактерии-продуцента L-лизина Escherichia coli. Данный бактериальный штамм был получен путем селекции фенотипа устойчивости к АЕС у штамма W3110, производного от штамма Escherichia coli К-12. Полученный штамм был назван Escherichia coli AJ13069 и был депонирован в Национальном Институте Биологических Наук и Человеческих Технологий, Агенство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry) (в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6,1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6,1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan) 6 декабря, 1994 г.и получил инвентарный номер FERM Р-14690. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора 29 сентября 1995 г., и штамм получил инвентарный номер FERM BP-5252 (смотри патент США 5827698).

Бактерия - продуцент L-цистеина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-цистеина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е.coli JM15, трансформированный различными аллелями гена cysE, кодирующими устойчивые к ингибированию по типу обратной связи серинацетилтрансферазы (патент США 6218168, патентная заявка РФ 2003121601); штамм Е.coli W3110, содержащий сверхэкспрессированные гены, кодирующие белок, способный к секреции соединений, токсичных для клетки (патент США 5972663); штаммы Е.coli, содержащие цистеиндесульфогидразу со сниженной активностью (патент Японии JP11155571 А2); штамм Е.coli W3110 с повышенной активностью позитивного транскрипционного регулятора цистеинового регулона, кодируемого геном cysB (международная заявка РСТ WO0127307 A1) и подобные им.

Бактерия - продуцент L-лейцина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-лейцина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штаммы Е.coli, устойчивые к аналогам лейцина, включающим, например, β-2-тиенилаланин, 3-гидроксилейцин, 4-азалейцин и 5,5,5-трифлуоролейцин (выложенные патентные заявки Японии 62-34397 и 8-70879), штаммы Е.coli, полученные с помощью генно-инженерных методов, описанных в заявке РСТ 96/06926; Е.coli штамм Н-9068 (JP8-70879 A2), и подобные им.

Бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-лейцина. Примеры таких генов включают в себя гены оперона leuABCD и предпочтительно представлены мутантным геном leuA, кодирующим изопропилмалатсинтазу со снятым ингибированием L-лейцином по типу обратной связи (патент США 6403342). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, которые экспортируют L-аминокислоту из бактериальной клетки. Примеры таких генов включают в себя гены b2682 и b2683 (гены ygaZH) (патентная заявка РФ 2001117632).

Бактерия - продуцент L-гистидина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-гистидина согласно настоящему изобретению, включают в себя, но не ограничиваются бактериями-продуцентами L-гистидина, принадлежащими к роду Escherichia, такими как штамм Е.coli 24 (ВКПМ В-5945, патент РФ 2003677); штамм Е.coli 80 (ВКПМ В-7270, патент РФ 2119536); штаммы Е.coli NRRL В-12116-В12121 (патент США 4388405); штаммы Е.coli H-9342 (FERM ВР-6675) и Н-9343 (FERM ВР-6676) (патент США 6344347); штамм Е.coli H-9341 (FERM BP-6674) (Европейский патент 1085087); штамм Е.coli AI80/pFM201 (патент США 6258554) и подобными им.

Бактерия - продуцент L-глутаминовой кислоты

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е.coli VL334 thrC+ (Европейский патент ЕР 1172433). Штамм Е.coli VL334 (ВКПМ В-1641) является ауксотрофом по L-изолейцину и L-треонину с мутациями в генах thrC и ilvA (патент США 4278765). В этот штамм была перенесена природная аллель гена thrC методом общей трансдукции с использованием бактериофага Р1, выращенного на клетках природного штамма Е.coli K12 (ВКПМ В-7). В результате был получен штамм, ауксотроф по L-изолейцину, VL334thrC+(ВКПМ В-8961). Этот штамм обладает способностью к продукции L-глутаминовой кислоты.

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя мутантные штаммы, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α-кетоглутаратдегидрогеназы. Бактерии, принадлежащие к роду Escherichia, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α-кетоглутаратдегидрогеназы, и способы их получения описаны в патентах США 5378616 и 5573945. Конкретно, примеры таких штаммов включают в себя следующие штаммы:

Е.coli W3110sucA::Kmr

E.coli AJ12624 (FERM BP-3853)

E.coli AJ12628 (FERM BP-3854)

E.coli AJ12949 (FERM BP-4881)

E.coli W3110sucA::Kmr - это штамм, полученный в результате разрушения гена α-кетоглутаратдегидрогеназы (далее называемого "ген sucA") в штамме E.coli W3110. У этого штамма активность α-кетоглутаратдегидрогеназы отсутствует полностью.

Другие примеры бактерии-продуцента L-глутаминовой кислоты включают в себя бактерии, принадлежащие к роду Pantoea, которые лишенны активности α-кетоглутаратдегидрогеназы или имеют сниженную активность α-кетоглутаратдегидрогеназы, и могут быть получены описанным выше способом. Примерами таких штаммов являются штамм Pantoea ananatis AJ13356 (патент США 6331419), штамм Pantoea ananatis AJ13356, депонированный в Национальном Институте Биологических Наук и Человеческих Технологий, Агенство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry) (в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6, 1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония - National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan) 19 февраля, 1998 и получивший инвентарный номер FERM P-16645. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора от 11 января 1999 г., и штамм получил инвентарный номер FERM BP-6615. В штамме Pantoea ananatis AJ13356 отсутствует активность α-KGDH в результате разрушения гена субъединицы αKGDH-El (sucA). Вышеупомянутый штамм при выделении был идентифицирован как Enterobacter agglomerans и депонирован как штамм Enterobacter agglomerans AJ13355. Тем не менее позднее он был классифицирован как Pantoea ananatis на основе нуклеотидной последовательности 16S рРНК и других доказательств (смотри раздел Примеры). Несмотря на то, что оба штамма - AJ13355 и полученный из него штамм AJ13356 были депонированы в указанный выше депозитарий как Enterobacter agglomerans, для целей данного описания они будут упоминаться как Pantoea ananatis.

Бактерия - продуцент L-фенилаланина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-фенилаланина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм AJ12739 (tyrA::Tn10, tyrR) (ВКМП В-8197); штамм HW1089 (АТСС-55371), содержащий ген pheA34 (патент США 5354672); мутантный штамм MWEC101-b (KR8903681); штаммы NRRL B-12141, NRRL B-12145, NRRL В-12146 и NRRL В-12147 (патент США 4407952) и подобные им. Также в качестве родительских штаммов могут быть использованы бактерии, принадлежащие к роду Escherichia, - продуценты L-фенилаланина, такие как штамм E.coli K-12[W3110(tyrA)/pPHAB] (FERM BP-3566), штамм E.coli K-12[W3110(tyrA)/pPHAD] (FERM BP-12659), штамм E.coli K-12 [W3110(tyrA)/pPHATerm] (FERM BP-12662) и штамм Е.coli К-12 [W3110(tyrA)/pBR-aroG4, pACMAB], названный как AJ12604 (FERM BP-3579) (Европейский патент ЕР488424 В1). Кроме того, также могут быть использованы бактерии-продуценты L-фенилаланина, принадлежащие к роду Escherichia с повышенной активностью белков, кодируемых геном yedA или геном yddG (патентные заявки США 2003/0148473 А1 и 2003/0157667 A1).

Бактерия - продуцент L-триптофана

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-триптофана согласно настоящему изобретению, включают в себя, но не ограничиваются бактериями-продуцентами L-триптофана, принадлежащими к роду Escherichia, такими как штаммы Е.coli JP4735/pMU3028 (DSM10122) и JP6015/pMU91 (DSM10123), лишенные активности триптофанил-тРНК синтетазы, кодируемой мутантным геном trpS (патент США 5756345); штамм Е.coli SV164 (pGH5), содержащий аллель гена serA, кодирующего фермент, не ингибируемый серином по типу обратной связи (патент США 6180373); штаммы Е.coli AGX17 (pGX44) (NRRL B-12263) и AGX6(pGX50)aroP (NRRL В-12264), лишенные активности триптофаназы (патент США 4371614); штамм Е.coli AGX17/pGX50, pACKG4-pps, в котором усилена способность к синтезу фосфоенолпирувата (международная заявка 9708333, патент США 6319696), и подобные им.

Ранее было показано, что природная аллель гена yddG, кодирующего мембранный белок, не участвующий в путях биосинтеза ни одной из L-аминокислот, амплифицированная на многокопийном векторе в микроорганизме, придает этому микроорганизму устойчивость к L-фенилаланину и нескольким аналогам этой аминокислоты. Кроме того, введение в клетки бактерий-продуцентов L-фенилаланина или L-триптофана дополнительных копий гена yddG может положительно влиять на продукцию соответствующих аминокислот (международная заявка РСТ WO03044192). Таким образом, желательно, чтобы бактерия-продуцент L-триптофана была далее модифицирована таким образом, что в этой бактерии усилена экспрессия открытой рамки считывания yddG.

Бактерия - продуцент L-пролина

Примеры бактерий-продуцентов L-пролина, используемых в качестве родительского штамма согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е.coli 702ilvA (ВКПМ В-8012), дефицитного по гену ilvA и способного к продукции L-пролина (Европейский патент ЕР 1172433). Бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-пролина. Предпочтительно примеры таких генов для бактерий-продуцентов L-пролина включают ген proB, кодирующий глутаматкиназу с десенсибилизированной регуляцией L-пролином по типу обратной связи (патент Германии 3127361). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, экскретирующие L-аминокислоту из бактериальной клетки. Примерами таких генов являются гены b2682 и b2683 (ygaZH гены) (Европейская патентная заявка ЕР 1239041 А2).

Примеры бактерий, принадлежащих к роду Escherichia и обладающих способностью к продукции L-пролина, включают следующие штаммы Е.coli: NRRL В-12403 и NRRL В-12404 (патент Великобритании GB 2075056), ВКПМ В-8012 (патентная заявка РФ 2000124295), плазмидные мутанты, описанные в патенте Германии DE 3127361, плазмидные мутанты, описанные у Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34), и подобные им.

Бактерия - продуцент L-аргинина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-аргинина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е.coli 237 (ВКПМ В-7925) и его производные, содержащие мутантную N-ацетилглутаматсинтазу (патентная заявка РФ 2001112869), штамм-продуцент аргинина, в который введен ген argA, кодирующий N-ацетилглутаматсинтетазу (выложенная патентная заявка Японии 57-5693), и подобные им.

2. Способ согласно настоящему изобретению.

Способом согласно настоящему изобретению является способ получения L-аминокислоты, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-аминокислоты в питательной среде, и выделения L-аминокислоты из культуральной жидкости.

Согласно настоящему изобретению выращивание, выделение и очистка L-аминокислоты из культуральной или подобной ей жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых аминокислота продуцируется с использованием бактерии.

Питательная среда, используемая для выращивания, может быть как синтетической, так и натуральной, при условии, что указанная среда содержит источники углерода, азота, минеральные добавки и, если необходимо, соответствующее количество питательных добавок, необходимых для роста микроорганизмов. К источникам углерода относятся различные углеводы, такие как глюкоза и сахароза, а также различные органические кислоты. В зависимости от характера ассимиляции используемого микроорганизма могут использоваться спирты, такие как этанол и глицерин. В качестве источника азота могут использоваться различные неорганические соли аммония, такие как аммиак и сульфат аммония, другие соединения азота, такие как амины, природные источники азота, такие как пептон, гидролизат соевых бобов, ферментолизат микроорганизмов. В качестве минеральных добавок могут использоваться фосфат калия, сульфат магния, хлорид натрия, сульфат железа, сульфат марганца, хлорид кальция и подобные им соединения. В качестве витаминов могут использоваться тиамин и дрожжевой экстракт.

Выращивание осуществляется предпочтительно в аэробных условиях, таких как перемешивание культуральной жидкости на качалке, взбалтывание с аэрацией, при температуре в пределах от 20 до 40°С, предпочтительно в пределах от 30 до 38°С. рН среды поддерживают в пределах от 5 до 9, предпочтительно от 6.5 до 7.2. рН среды может регулироваться аммиаком, карбонатом кальция, различными кислотами, основаниями и буферными растворами. Обычно выращивание в течение от 1 до 5 дней приводит к накоплению целевой L-аминокислоты в культуральной жидкости.

После выращивания твердые остатки, такие как клетки, могут быть удалены из культуральной жидкости методом центрифугирования или фильтрацией через мембрану, а затем L-аминокислота может быть выделена и очищена методами ионообменной хроматографии, концентрирования и/или кристаллизации.

Краткое описание чертежей

На Фиг.1 изображены относительные положения праймеров bolAL и bolAR на плазмиде pACYC184, используемой для амплификации гена cat.

На Фиг.2 изображено конструирование фрагмента хромосомной ДНК, содержащего инактивированный ген bolA.

Примеры

Настоящее изобретение будет более подробно описано ниже со ссылкой на следующие не ограничивающие настоящее изобретение Примеры.

Пример 1. Конструирование штамма с инактивированным геном bolA.

1. Деления гена bolA.

Штамм, содержащий делецию в гене bolA, был сконструирован с использованием методики, разработанной Datsenko, K.A. и Wanner, B.L. (Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6640-6645), известной как "Red-зависимая интеграция". В соответствии с этой методикой были синтезированы ПЦР праймеры bolAL (SEQ ID NO:3) и bolAR (SEQ ID NO:4), гомологичные областям хромосомы, прилегающим к гену glgC, и гену, сообщающему устойчивость к антибиотику на плазмиде, используемой в качестве матрицы для ПЦР. В качестве матрицы для ПЦР была использована плазмида pACYC184 (NBL Gene Sciences Ltd., UK) (инвентарный номер Х06403 в базе данных GenBank/EMBL). Использовался следующий температурный профиль для ПЦР: денатурация при 95°С в течение 3 мин; два первых цикла: 1 мин при 95°С, 30 сек при 50°С, 40 сек при 72°С; и последующие 25 циклов: 30 сек при 95°С, 30 сек при 54°С, 40 сек при 72°С; и заключительная полимеризация: 5 мин при 72°С.

Полученный продукт ПЦР длиной 1152 п.о. (Фиг.1) был очищен в агарозном геле и был использован для электропорации в штамм Е.coli MG1655 (АТСС 700926), содержащий плазмиду pKD46 с температур-чувствительным репликоном. Плазмида pKD46 (Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. USA, 2000, 97:12:6640-45) содержит фрагмент ДНК фага λ (инвентарный номер последовательности J02459 в базе данных GenBank) длиной 2,154 нуклеотида (31088-33241), а также содержит гены λ Red гомологичной системы рекомбинации (γ, β, ехо гены) под контролем промотора РагаВ, индуцируемого арабинозой. Плазмида pKD46 необходима для интеграции продукта ПЦР в хромосому штамма MG1655.

Электрокомпетентные клетки были получены следующим образом: ночную культуру штамма Е.coli MG1655 выращивали при 30°С в LB среде с добавкой ампициллина (100 мг/л), развели в 100 раз при помощи 5 мл среды SOB (Sambrook et al, "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)), содержащей ампициллин и L-арабинозу (1 мМ). Полученную культуру растили с перемешиванием при 30°С до достижения OD600≈0.6, после чего делали клетки электрокомпетентными, путем концентрации в 100 раз трехкратного отмывания ледяной деионизированной Н2О. Электропорацию проводили с использованием 70 мкл клеток и ≈100 нг продукта ПЦР. После электропорации клетки инкубировали с 1 мл среды SOC (Sambrook et al, "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)) при 37°С в течение 2.5 часов, после чего высевали на чашки с L-агаром и выращивали при 37°С для отбора CmR рекомбинантов. Затем для удаления плазмиды pKD46, проводили 2 пассажа на L-агаре с Cm при 42°С и полученные колонии проверяли на чувствительность к ампициллину.

2. Подтверждение делеции гена bolA с помощью ПЦР.

Мутанты с делегированным геном bolA и содержащие ген устойчивости к Cm были проверены с помощью ПЦР. Локус-специфичные праймеры bolAl (SEQ ID NO:5) и bolA2 (SEQ ID NO:6) использовались для проверки делеции с помощью ПЦР. Использовался следующий температурный профиль для ПЦР проверки: денатурация при 94°С в течение 3 мин; профиль для 30 циклов: 30 сек при 94°С, 30 сек при 54°С, 1 мин при 72°С; заключительный шаг: 7 мин при 72°С.Длина продукта ПЦР, полученного в результате реакции с использованием в качестве матрицы клеток родительского штамма bolA+MG1655, составляет 1492 п.о. Длина продукта ПЦР, полученного в результате реакции с использованием в качестве матрицы клеток мутантного штамма MG1655 ΔbolA::cat, составляет 2293 п.о. (Фиг.2).

Пример 2. Продукция L-треонина штаммом Е.coli B-3996- ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию треонина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat были перенесены в штамм-продуцент L-треонина Е.coli B-3996 (ВКПМ B-3996) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего был получен штамм B-3996-ΔbolA.

Оба штамма Е.coli B-3996 и B-3996-ΔbolA выращивали в течение 18-24 часов при температуре 37°С на чашках с L-агаром, содержащих хлорамфеникол (30 мкг/мл).

Для получения посевной культуры указанные штаммы выращивали при 32°С в течение 18 часов на роторной качалке (250 об/мин) в пробирках 20×200 мм, содержащих 2 мл L-бульона с 4% сахарозой. Затем в ферментационную среду были внесены по 0.21 мл (10%) посевной культуры. Ферментацию проводили в 2 мл минимальной ферментационной среды в пробирках 20×200 мм. Клетки выращивали в течение 65 часов при 32°С с перемешиванием (250 об/мин).

После выращивания количество накопленного в среде L-треонина определяли с помощью бумажной хроматографии, с использованием подвижной фазы следующего состава: бутанол : уксусная кислота : вода=4:1:1 (v/v). Раствор (2%) нингидрина в ацетоне использовали для визуализации. Пятна, содержащие L-треонин, могут быть вырезаны, L-треонин был элюирован 0.5% водным раствором CdCl2, после чего количество L-треонина оценивалось спектрофотометрическим методом при длине волны 540 нм.

Результаты 10 независимых пробирочных ферментаций приведены в Таблице 1.

Использовали следующий состав ферментационной среды, г/л:

Глюкоза80.0
(NH4)2SO422.0
NaCl0.8
КН2PO42.0
MgSO4·7H2O0.8
FeSO4·7H2O0.02
MnSO4·5H2O0.02
Тиамин гидрохлорид0.002
Дрожжевой экстракт1.0
СаСО330.0

MgSO4·7H2O и СаСО3 стерилизовали отдельно. СаСО3 стерилизовали сухим жаром при 180°С в течение 2 часов. рН доводили до 7.0. Антибиотик добавляли в среду после стерилизации.

Как видно из Таблицы 1, штамм В-3996-ΔbolA накапливал большее количество L-треонина по сравнению со штаммом В-3996.

Пример 3. Продукция L-лизина штаммом Е.coli AJ11442-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию лизина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-лизина Е.coli WC196 (pCABD2) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). pCABD2 - это плазмида, содержащая ген dapA, кодирующий мутантную дигидропиколинатсинтазу, устойчивую к ингибированию L-лизином по типу обратной связи, ген lysC, кодирующий мутантную аспартокиназу III, устойчивую к ингибированию L-лизином по типу обратной связи, ген dapB, кодирующий дигидропиколинатредуктазу и ген ddh, кодирующий диаминопимелатдегидрогеназу (патент США 6040160).

Оба штамма Е.coli, родительский WC196(pCABD2) и полученный WC196(pCABD2) ΔbolA::cat, могут выращиваться в L-среде, содержащей 50 мг/л хлорамфеникола и 20 мг/л стрептомицина при 37°С, и 0.3 мл полученных культур может быть внесено в 20 мл ферментационной среды, содержащей необходимые антибиотики, в 500 мл колбы. Культивирование может производиться при 37°С в течение 16 часов с использованием возвратно-поступательной качалки со скоростью перемешивания 115 об/мин. После выращивания количества L-лизина и остаточной глюкозы в среде могут быть измерены известным способом (Biotech-analyzer AS210, производитель - Sakura Seiki Co.). Затем для каждого из штаммов может быть рассчитан выход L-лизина в пересчете на потребленную глюкозу.

Состав ферментационной среды, г/л:

Глюкоза40
(NH4)2SO424
К2HPO41.0
MgSO4·7H2O1.0
FeSO4·7H2O0.01
MnSO4·5H2O0.01
Дрожжевой экстракт2.0

рН доводят до 7.0 в помощью КОН и среду автоклавируют при 115°С в течение 10 мин. Глюкозу и MgSO4·7H2O стерилизуют отдельно. Также добавляют 30 г/л СаСО3, предварительно простерилизованного сухим жаром при 180°С в течение 2 часов.

Пример 4. Продукция L-цистеина штаммом Е.coli JM15(ydeD)-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-цистеина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 AbolA::cat могут быть перенесены в штамм-продуцент L-цистеина Е.coli JM15(ydeD) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм JM15(ydeD)-AbolA.

Штамм Е.coli JM15(ydeD) является производным штамма Е.coli JM15 (патент США 6218168), который может быть трансформирован ДНК, содержащим ген ydeD, кодирующий мембранный белок, не вовлеченный в пути биосинтеза ни одной из L-аминокислот (патент США 5972663).

Условия ферментации для оценки продукции L-цистеина детально описаны в Примере 6 патента США 6218168.

Пример 5. Продукция L-лейцина штаммом Е.coli 57-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-лейцина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-лейцина Е.coli 57 (ВКПМ В-7386, патент США 6124121) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм 57-pMW-ΔbolA.

Оба штамма Е.coli, 57 и 57-ΔbolA, могут выращиваться в течение 18-24 часов при температуре 37°С на чашках с L-агаром, содержащих хлорамфеникол (30 мкг/мл). Для получения посевной культуры указанные штаммы могут быть выращены на роторной качалке (250 об/мин) при 32°С в течение 18 часов в пробирках 20×200 мм, содержащих 2 мл L-бульона с 4% сахарозы. Затем в ферментационную среду может быть внесено по 0.21 мл (10%) посевной культуры. Ферментацию можно проводить в 2 мл минимальной ферментационной среды в пробирках 20×200 мм. Клетки могут выращиваться в течение 48-72 часов при 32°С с перемешиванием (250 об/мин).

Количество L-лейцина может быть измерено с помощью бумажной хроматографии (состав подвижной фазы: бутанол - уксусная кислота - вода=4:1:1).

Может быть использован следующий состав ферментационной среды, г/л (рН 7.2):

Глюкоза60.0
(NH4)2SO425.0
К2HPO42.0
MgSO4·7H2O1.0
Тиамин0.01
СаСО325.0

Глюкозу и мел следует стерилизовать отдельно.

Пример 6. Продукция L-гистидина штаммом Е.coli 80-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-гистидина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-гистидина Е.coli 80 с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). Штамм 80 описан в патенте РФ 2119536 и депонирован во Всероссийской национальной коллекции промышленных микроорганизмов (Россия, 117545 Москва, 1-й Дорожный проезд, 1) с инвентарным номером ВКПМ В-7270.

Оба штамма, родительский 80 и полученный 80-ΔbolA, могут выращиваться с перемешиванием при 29°С в течение 6 часов в питательном бульоне. Затем 0.1 мл полученных культур может быть внесено в 2 мл ферментационной среды в пробирки 20×200 мм и выращивают при 29°С в течение 65 часов на роторной качалке (350 об/мин).

После выращивания количество накопленного в среде гистидина может быть определено с помощью бумажной хроматографии. Хроматограммы можно поместить в подвижную фазу следующего состава: n-бутанол: уксусная кислота: вода=4:1:1 (v/v). Раствор (0.5%) нингидрина в ацетоне может быть использован для визуализации.

Состав ферментационной среды (рН 6.0), г/л:

Глюкоза100.0
Мамено0.2 общего азота
L-пролин1.0
(NH4)2SO425.0
КН2PO42.0
MgSO4·7H2O1.0
FeSO4·7H2O0.01
MnSO40.01
Тиамин0.001
Бетаин2.0
СаСО360.0

Глюкозу, пролин, бетаин и СаСО3 стерилизуют отдельно. рН доводят до 6.0 перед стерилизацией.

Пример 7. Продукция L-глутаминовой кислоты штаммом Е.coli VL334thrC+-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-глутаминовой кислоты фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-глутаминовой кислоты Е. VL334thrC+(ЕР 1172433) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм VL334thrC+-ΔbolA.

Оба штамма, родительский VL334thrC+ и полученный VL334thrC+-ΔbolA, могут выращиваться на чашках с L-агаром, содержащих хлорамфеникол (30 мкг/мл) при 37°С в течение 18-24 часов. Далее, одна петля клеток может быть перенесена в пробирки, содержащие 2 мл ферментационной среды. Ферментационная среда должна содержать глюкозу - 60 г/л, сульфат аммония - 25 г/л, КН2PO4 - 2 г/л, MgSO4 - 1 г/л, тиамин - 0.1 мг/мл, L-изолейцин - 70 мкг/мл и мел - 25 г/л (рН 7.2). Глюкозу и мел следует стерилизовать отдельно. Выращивание может производиться при 30°С в течение 3 дней с перемешиванием. После выращивания количество полученной L-глутаминовой кислоты может быть определено с помощью бумажной хроматографии (состав подвижной фазы: бутанол - уксусная кислота - вода=4:1:1) с последующим окрашиванием нингидрином (1% раствор в ацетоне) и дальнейшим элюированием полученных соединений в 50% этаноле с 0.5% CdCl2.

Пример 8. Продукция L-фенилаланина штаммом Е.coli AJ2739-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-фенилаланина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-фенилаланина Е.coli AJ12739 с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). Штамм AJ12739 депонирован в Российской Национальной Коллекции Промышленных Микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1-й Дорожный проезд, 1) 6 ноября, 2001 с инвентарным номером ВКПМ В-8197.

Оба штамма, родительский AJ12739 и полученный AJ2739-ΔbolA, могут выращиваться с перемешиванием при 37°С в течение 18 часов в питательном бульоне, 0.3 мл полученных культур может быть внесено в 3 мл ферментационной среды в пробирки 20×200 мм и выращивают при 37°С в течение 48 часов на роторной качалке. По окончании ферментации количество накопленного в среде фенилаланина может быть определено с помощью тонкослойной хроматографии (TLC). Для этой цели могут быть использованы TLC пластинки 10×15 см, покрытые 0.11 мм слоем силикагеля Сорбфил без флуоресцентного индикатора (Акционерное Общество Сорбполимер, Краснодар, Россия). Пластинки Сорбфил могут экспонироваться в подвижной фазе следующего состава: пропан-2-ол: этилацетат: 25% водного аммиака: вода=40:40:7:16 (v/v). Раствор (2%) нингидрина в ацетоне может быть использован для визуализации.

Состав ферментационной среды, г/л:

Глюкоза40.0
(NH4)2SO416.0
К2HPO40.1
MgSO4·7Н2O1.0
FeSO4·7H2O0.01
MnSO4·5H2O0.01
Тиамин HCl0.0002
Дрожжевой экстракт2.0
Тирозин0.125
СаСО320.0

Глюкозу и сульфат марганца стерилизуют отдельно. СаСО3 стерилизуют сухим жаром при 180°С в течение 2 часов. рН доводят до 7.0.

Пример 9. Продукция L-триптофана штаммом Е.coli SV164 (pGH5)-AbolA.

Для оценки влияния инактивации гена bolA на продукцию L-триптофана фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-триптофана Е.coli SV164 (pGH5) с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). Штамм SV164 (pGH5) подробно описан в патенте США 6180373 или Европейском патенте 0662143.

Оба штамма, полученный SV164(pGH5)-ΔbolA и родительский SV164(pGH5), могут выращиваться с перемешиванием при 37°С в течение 18 часов в 3 мл питательного бульона с добавлением тетрациклина (маркера плазмиды pGH5) 20 мг/мл и хлорамфеникола (30 мкг/мл). 0.3 мл полученных культур могут быть внесены в 3 мл ферментационной среды, содержащей тетрациклин (20 мг/мл) в пробирках 20×200 мм, и могут выращиваться при 37°С в течение 48 часов на роторной качалке при 250 об/мин. После выращивания количество накопленного в среде триптофана может быть определено с помощью TLC, как описано в Примере 8.

Компоненты ферментационной среды представлены в Таблице 2, но группы компонентов А, В, С, D, Е, F и Н следует стерилизовать отдельно, как и показано в Таблице, чтобы избежать нежелательных взаимодействий во время стерилизации.

Пример 10. Продукция L-пролина штаммом Е.coli 702ilvA-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-пролина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat могут быть перенесены в штамм-продуцент L-пролина Е.coli 702ilvA с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). Штамм 702ilvA депонирован в Российской Национальной Коллекции Промышленных Микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1-й Дорожный проезд, 1) с инвентарным номером ВКПМ В-8012.

Оба штамма Е.coli 702ilvA и 702ilvA- ΔbolA могут выращиваться в течение 18-24 часов при температуре 37°С на чашках с L-агаром, содержащих хлорамфеникол (30 мкг/мл). Затем ферментация с использованием этих штаммов может производиться в тех же условиях, как описано в Примере 7.

Пример 11. Продукция L-аргинина штаммом Е.coli 382-ΔbolA.

Для оценки влияния инактивации гена bolA на продукцию L-аргинина фрагменты ДНК из хромосомы описанного выше штамма Е.coli MG1655 ΔbolA::cat были перенесены в штамм-продуцент L-аргинина Е.coli 382 с помощью Р1 трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY). Штамм 382 депонирован в Российской Национальной Коллекции Промышленных Микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1-й Дорожный проезд, 1)10 апреля, 2000 года с инвентарным номером ВКПМ В-7926.

Оба штамма, родительский 382 и полученный 382-ΔbolA, выращивались с перемешиванием на роторной качалке при 32°С в течение 72 часов в 2 мл ферментационной среды.

После выращивания количество накопленного в среде L-аргинина определяли с помощью бумажной хроматографии, при этом использовался следующий состав подвижной фазы: бутанол : уксусная кислота : вода=4:1:1 (v/v). Раствор (2%) нингидрина в ацетоне был использован для визуализации. Пятна, содержащие L-аргинин, могут быть вырезаны, L-аргинин был элюирован 0.5% водным раствором CdCl2, после чего количество L-аргинина оценивалось спектрофотометрическим методом при длине волны 540 нм. Результаты 10 независимых пробирочных ферментаций приведены в Таблице 3.

Состав ферментационной среды, г/л:

Глюкоза48.0
(NH4)2SO435.0
КН2PO42.0
MgSO4·7H2O1.0
Тиамин HCl0.0002
Дрожжевой экстракт5.0
СаСО35.0

Глюкозу и сульфат марганца стерилизуют отдельно. СаСО3 стерилизуют сухим жаром при 180°С в течение 2 часов. рН доводят до 7.0.

Как видно из Таблицы 3, штамм 382-ΔbolA накапливал большее количество L-треонина по сравнению со штаммом 382.

Хотя указанное изобретение описано в деталях со ссылкой на наилучший способ осуществления изобретения, для специалиста в указанной области техники очевидно, что могут быть совершены различные изменения и произведены эквивалентные замены, и такие изменения и замены не выходят за рамки настоящего изобретения.

Каждому из упомянутых выше документов соответствует ссылка, и все цитируемые документы являются частью описания настоящего изобретения.

Таблица 1
ШтаммOD540L-треонин, г/л
В-399626.1±0.523.4±0.3
В-3996-ΔbolA24.8±0.623.9±0.4

Таблица 2
РастворыКомпонентКонечная концентрация, г/л
АКН2PO41.5
NaCl0.5
(NH4)2SO41.5
L-метионин0.05
L-фенилаланин0.1
L-тирозин0.1
Mameno (общий N)0,07
ВГлюкоза40.0
MgSO4·7Н2O0.3
СCaCl20.011
DFeSO4·7Н2О0.075
Цитрат натрия1.0
ЕNa2MoO4·2H2O0.00015
Н3ВО30.0025
CoCl2·6H2O0.00007
CuSO4·5H2O0.00025
MnCl2·4H2O0.0016
ZnSO4·7H2O0.0003
FТиамин HCl0.005
GСаСО330.0
HПиридоксин0.03
В растворе А рН доводят до значения 7.1 при помощи NH4OH.

Таблица 3
ШтаммOD540L-аргинин, г/л
38212.0±0.312.0±0.7
382-ΔbolA11.2±0.713.3±0.7

1. Бактерия, принадлежащая к роду Escherichia - продуцент L-треонина или L-аргинина, модифицированная таким образом, что в указанной бактерии инактивирован ген bolA.

2. Бактерия по п.1, отличающаяся тем, что указанный ген bolA инактивирован за счет делеции гена bolA в хромосоме бактерии.

3. Способ получения L-треонина или L-аргинина, включающий:

выращивание бактерии по п.1 или 2 в питательной среде, вызывающее продукцию и накопление L-аминокислоты в культуральной жидкости; и

выделение L-аминокислоты из культуральной жидкости.



 

Похожие патенты:

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, в которой инактивирован оперон yefM-yoeB.

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислоты с использованием бактерии рода Escherichia, в котором указанная бактерия модифицирована таким образом, что активность пермеазы L-арабинозы в данной бактерии повышена.

Изобретение относится к биотехнологии и представляет собой способ получения неароматической L-аминокислоты с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что в указанной бактерии ген csrA инактивирован.

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что оперон phoBR в указанной бактерии инактивирован.

Изобретение относится к биотехнологии и представляет собой выделенные молекулы нуклеиновой кислоты Corynebacterium glutamicum, которые кодируют полипептид, обладающий активностью 6-фосфоглюконолактоназы.

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислоты. .

Изобретение относится к биотехнологии и представляет собой выделенные молекулы нуклеиновой кислоты Corynebacterium glutamicum, которые кодируют полипептид с активностью сульфатаденилаттрансферазы.

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислот, таких как L-треонин, L-лизин, L-гистидин, L-фенилаланин, L-аргинин или L-глутаминовая кислота, с использованием бактерии рода Escherichia, причем бактерия модифицирована таким образом, что активность пермеазы D-ксилозы в указанной бактерии повышена.

Изобретение относится к биотехнологии и представляет собой выделенные молекулы нуклеиновой кислоты Corynebacterium glutamicum, которые кодируют полипептид с активностью белка резистентности к линкомицину.

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислоты посредством культивирования бактерии рода Bacillus, обладающей способностью продуцировать L-аминокислоту, в среде, содержащей метанол в качестве источника углерода, и сбора L-аминокислоты из среды или клеток указанной бактерии.

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, в которой инактивирован оперон yefM-yoeB.

Изобретение относится к биотехнологии и касается варианта белка субтилизина Bacillus amyloliguefaciens с заменой Y217L, содержащий Т-клеточный эпитоп, при этом указанный Т-клеточный эпитоп указанного варианта включает одну или несколько аминокислотных замен, выбранных из группы, состоящей из остатков, соответствующих положениям 76, 79 и 122, где указанный вариант субтилизина необязательно имеет замену в одном или нескольких из положений 3, 31, 40, 41, 46, 47, 48, 50, 76, 101, 104, 107, 111, 128, 147, 154, 181, 182, 183, 185, 206, 215, 216, 218, 238, 247, 248, 250, 254, 258, 262.

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислоты с использованием бактерии рода Escherichia, в котором указанная бактерия модифицирована таким образом, что активность пермеазы L-арабинозы в данной бактерии повышена.

Изобретение относится к биотехнологии и представляет собой способ получения неароматической L-аминокислоты с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что в указанной бактерии ген csrA инактивирован.

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что оперон phoBR в указанной бактерии инактивирован.

Изобретение относится к области биотехнологии, в частности к генетической инженерии, и может быть использовано в микробиологической промышленности при получении полусинтетических бета-лактамных антибиотиков нового поколения.

Изобретение относится к области биотехнологии, в частности к генетической инженерии, и может быть использовано в микробиологической промышленности при получении полусинтетических бета-лактамных антибиотиков нового поколения.

Изобретение относится к биотехнологии и представляет собой выделенные молекулы нуклеиновой кислоты Corynebacterium glutamicum, которые кодируют полипептид, обладающий активностью 6-фосфоглюконолактоназы.

Изобретение относится к биотехнологии и представляет собой прокариотическую рекомбинантную клетку хозяина, содержащую гетерологичный белок инициации репликации, который активирует зависимую от условий точку начала репликации, и внехромосомную молекулу ДНК, содержащую гетерологичный терапевтический ген и зависимую от условий точку начала репликации.
Изобретение относится к биотехнологии, в частности к способу продуцирования 5'-ксантиловой кислоты с помощью культивирования мутантного штамма Corynebacterium ammoniagenes CJXOL 0201, депонированного под номером КССМ 10448 и обладающего резистентностью к олигомицину
Наверх