Способ определения степени сухости пара

Изобретение относится к измерительной технике. В способе в закачиваемый в скважину насыщенный водяной пар добавляют неконденсируемый в скважине в условиях процесса закачки газ. Присутствие неконденсируемого газа в смеси изменяет парциальное давление пара. Тем самым изменяется и температура конденсации пара. Результаты измерения температуры или давления в стволе скважины используют для расчета степени сухости пара. Технический результат - возможность непосредственного определения степени сухости пара в процессе осуществления теплового воздействия на пласты с высоковязкой нефтью и упрощение способа в полевых условиях. 2 з.п. ф-лы.

 

Изобретение относится к способам определения степени сухости пара при осуществлении теплового воздействия на пласты с высоковязкой нефтью.

Паротепловая обработка призабойных зон скважин широко применяется в нефтяной промышленности для интенсификации добычи тяжелых вязких нефтей. Применяемый традиционный способ паротеплового воздействия заключается в закачке расчетного объема теплоносителя через нагнетательные скважины. Чаще всего в качестве теплоносителя используют насыщенный водяной пар со степенью сухости 0,7-0,8. Сухость пара является одним из критических параметров тепловых способов разработки тяжелых нефтей, основанных на закачке пара в пласт. В процессе доставки пара с поверхности до глубин интервала перфорации часть пара конденсируется в воду вследствие теплообмена с окружающими породами. В случае глубокого залегания пластов-коллекторов, недостаточной термоизоляции скважин, малых скоростей закачки и т.д. пар может полностью сконденсироваться в горячую воду. Это приведет к нарушению концепций тепловых способов разработки (вытеснение паром, паротепловая обработка скважин) и снижению их эффективности вследствие быстрого исчезновения внутренней энергии в результате конденсации пара.

Известные из уровня техники способы определения степени сухости пара в скважинных условиях основаны на отборе образцов пара из скважины, использовании сложных измерительных устройств или на использовании довольно дорогостоящих химических агентов в качестве трасеров.

Так, например, в патенте США №5470749, 1995 описан способ контроля степени сухости пара, предусматривающий отбор образца пара из скважины и смешивание его с небольшим количеством поверхностно-активного вещества. В патенте РФ 1046665, 1983 описан способ определения степени сухости пара, заключающийся в измерении статического давления и двух контрольных параметров, функционально связанных со степенью сухости пара.

Наиболее близким аналогом заявленного изобретения является способ определения степени сухости пара в скважине, включающий закачку пара в скважину и определение степени сухости пара в различных точках скважины (патент США 4581926, 15.04.1986). Известный способ предусматривает опускание в скважину специального устройства со вращающимся элементом, измерение скорости и плотности потока и последующий расчет расхода и степени сухости пара в любой точке по всей длине скважины. Недостатком данного способа является необходимость использования дополнительного устройства и сложность расчета.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении простого, применимого в полевых условиях и не требующего использования дополнительного оборудования способа определения степени сухости пара непосредственно в процессе осуществления теплового воздействия на пласты с высоковязкой нефтью. Данный технический результат достигается за счет того, что в закачиваемый в скважину насыщенный водяной пар добавляют неконденсируемый в скважине в условиях процесса закачки газ, а расчет степени сухости пара в различных точках скважины осуществляют по формуле:

где Qs - степень сухости пара на устье скважины,

Ps - давление нагнетания на устье скважины,

Pm - полное давление системы в данной точке (m) в стволе скважины,

Psteam,s - парциальное давление пара при температуре конденсации Ts на устье скважины,

Psteam,m - парциальное давление пара при температуре конденсации Tm в данной точке (m) в стволе скважины,

z - сжимаемость пара (steam) и неконденсируемого газа (gas) на устье скважины (s) и в данной точке (m) в стволе скважины.

При этом значения полного и парциальных давлений Pm, Psteam,s и Psteam,m определяют по результатам измерений температуры Ts и Tm в этих точках (до и после закачки неконденсируемого газа).

Количество неконденсируемого газа составляет не более 30% от общей массы парогазовой смеси.

Добавление неконденсируемого газа в количествах до 30% позволяет получить заметный сигнал падения температуры (от 30° до 50°), который может использоваться при расчете. Добавление большего количества неконденсируемого газа нецелесообразно из экономических и технологических соображений (может быть значительное снижение температуры).

В качестве неконденсируемых газов могут быть использованы углеводородные газы (метан, этан, пропан, бутан и т.д.), которые являются неконденсируемыми в данных эксплуатационных условиях, а также азот, двуокись углерода и т.п.

Предложенный способ определения степени сухости пара основан на том, что присутствие неконденсируемого газа в смеси изменяет парциальное давление пара. Тем самым изменяется и температура конденсации пара. Следовательно, результаты измерения температуры или давления в стволе скважины могут быть использованы для оценки степени сухости пара. В соответствии с законом Дальтона парциальное давление компоненты pj равно произведению мольной доли этой компоненты в газе yj и полного давления системы р:

(1)

Следовательно, добавление неконденсируемого газа в нагнетаемый в скважину водяной пар приводит к уменьшению парциального давления пара (общее давление нагнетания в системе остается прежним). Благодаря постоянным потерям тепла от скважины в окружающие породы, пар будет конденсироваться в воду по всей длине скважины. Сухость пара будет уменьшаться и, следовательно, мольная доля пара в газовой фазе ysteam будет таким же образом сокращаться. Это в свою очередь приводит к изменению парциального давления пара (согласно (1)) и соответствующему уменьшению температуры конденсации пара.

Таким образом, знание степени сухости пара на устье скважины, величин его давления и температуры дает возможность определить степень сухости пара по всей длине скважины, основываясь на скважинных замерах давления или температуры. Согласно закону Дальтона (1) и уравнению состояния для реальных газов

где Ps - это давление нагнетания на устье скважины, Psteam,s - парциальное давление пара при температуре конденсации Ts на устье скважины, w, μ, z - это соответственно массовый расход, молекулярная масса и сжимаемость пара (steam) и неконденсируемого газа (gas).

Следовательно массовые скорости пара и воды будут:

где Qs - это известная сухость пара на устье скважины.

Приведенные выше соотношения справедливы и для любой точки в стволе скважины (m), где Pm - это полное давление системы в данной точке (на данной глубине), a Psteam,m - парциальное давление пара при температуре конденсации Tm в данной точке. Из уравнения материального баланса и того факта, что в качестве добавки используется неконденсируемый газ, можно вывести выражение для определения степени сухости пара в точке (m):

Способ осуществляется следующим образом.

При осуществлении теплового воздействия на пласт с высоковязкой нефтью с поверхности в скважину закачивается пар с сухостью Qs=95%.

Давление и температура на устье скважины соответственно Ps=70 атм и Ts=287,7°С, на забое - Pm=60 атм и Tm=277,5°С соответственно.

После добавки неконденсируемого газа (метана) в количестве 20% от общей массы парогазовой смеси измерения температуры на устье и забое скважины показали, что:

a) температура на устье Ts снизилась до 273°С,

b) на забое скважины - до 251°С.

Фазовые диаграммы воды (Р-Т) дали соответствующие значения парциальных давлений Psteam,s=56 атм и Psteam,m=39 атм.

Используем предположение, что газы идеальные (z=1).

Подставляя в формулу (5), получаем:

Следовательно, степень сухости пара на забое скважины составляет 44%.

Несомненным преимуществом предложенного способа является его простота и применимость в полевых условиях. Он не требует установки дополнительного измерительного оборудования в скважине. Температурные замеры могут быть получены как при использовании распределенных систем измерения температуры, так и по результатам традиционной термометрии.

1. Способ определения степени сухости насыщенного водяного пара в скважине, включающий закачку пара в скважину и определение степени сухости пара в различных точках скважины, отличающийся тем, что в закачиваемый в скважину пар добавляют неконденсируемый в скважине в условиях процесса закачки газ, а расчет степени сухости пара в различных точках скважины определяют по формуле

где Qs - степень сухости пара на устье скважины;

Ps - давление нагнетания на устье скважины;

Рm - полное давление системы в данной точке (m) в стволе скважины;

Psteam,s - парциальное давление пара при температуре конденсации Ts на устье скважины;

Psteam,m - парциальное давление пара при температуре конденсации Тm в данной точке (m) в стволе скважины;

z - сжимаемость пара (steam) и неконденсируемого газа (gas) на устье скважины (s) и в данной точке (m) в стволе скважины.

2. Способ по п.1, отличающийся тем, что значения полного и парциальных давлений Pm, Psteam,s и Psteam,m определяют по результатам измерений температуры Ts и Тm в этих точках (до и после закачки неконденсируемого газа).

3. Способ по п.1, отличающийся тем, что количество неконденсируемого газа составляет не более 30 мас.% от общей массы парогазовой смеси.



 

Похожие патенты:

Изобретение относится к области измерения термодинамических параметров потока влажного пара, а именно степени сухости. .

Изобретение относится к области теплотехнических измерений и позволяет повысить точность. .

Изобретение относится к измерительной технике

Изобретение относится к области средств измерения, а именно к устройствам, служащим для измерения степени сухости пара в системах контроля тепловых потерь в тепловых сетях, величины коэффициента полезного действия турбинных агрегатов тепловых и атомных электростанций

Изобретение относится к технической физике, а именно к области контроля мощности генераторов тепловой энергии, и может быть использовано для определения производительности прямоточного парогенератора влажного пара с деаэратором

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля тепловой мощности, массового расхода, энтальпии и степени сухости потока влажного пара

Изобретение относится к технической физике, а именно к области контроля технологических параметров, и может быть использовано для контроля степени сухости, энтальпии, теплового и массового расходов влажного пара

Изобретение относится к измерительной технике, а именно к области регулирования термодинамических параметров, и может быть использовано для регулирования энтальпии теплоносителя в паропроводе прямоточного парогенератора влажного пара

Изобретение относится к устройству для определения степени сухости потока влажного пара

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля истинного объемного паросодержания и скоростей фаз влажного пара в паропроводе на потоке

Изобретение относится к технической физике, а именно к области устройств создающих поток тепловой энергии и теплоносителя с контролируемыми параметрами степени сухости, теплового и массового расходов, и может быть использовано для исследования средств контроля потока влажного пара. Устройство содержит паропровод перегретого пара с измерителем расхода, с измерителями давления и температуры, с участком для установки исследуемых образцов, с регулирующей и отсекающей (запирающей) арматурой. Также устройство содержит узел впрыска воды на участке паропровода после измерителя расхода, давления и температуры. Устройство также содержит измерители давления и температуры после узла впрыска, линию подвода воды к узлу впрыска с измерителем расхода, с измерителем давления и температуры, с регулирующей и отсекающей (запирающей) арматурой. Кроме того, устройство содержит контроллер, к входам которого подключены выходы всех измерителей. Техническим результатом является обеспечение возможности исследования средств контроля влажного пара в потоке с контролируемыми значениями степени сухости, теплового и массового расходов, а также обеспечение широкого диапазона изменения значений степени сухости, теплового и массового расходов влажного пара и контроль значений измеряемых и вычисляемых параметров с нормируемой точностью. 1 ил.

Изобретение относится к технической физике, а именно к области устройств контроля технологических параметров, и может быть использовано для контроля (определения) степени сухости, энтальпии, теплового и массового расходов влажного пара в паропроводах АЭС, ТЭС и в паровых магистралях. Устройство содержит паропровод, помещенный в паропровод зонд, с трубкой динамического напора и с трубкой динамического разрежения. Также устройство содержит преобразователь статического давления, преобразователь перепада давлений и контроллер, подключенный к выходам преобразователей. Устройство также содержит трубку статического давления, помещенную в зонд, с приемником статического давления, расположенным в зоне приемников трубки динамического напора и трубки динамического разрежения, и второй преобразователь перепада давлений. При этом выходы трубок динамического напора и статического давления подключены к входам преобразователя перепада давлений, а выходы трубок статического давления и динамического разрежения подключены к входам второго преобразователя перепада давлений. Кроме того, выход трубки статического давления подключен к входу преобразователя статического давления, по сигналам преобразователей контроллер вычисляет степень сухости, энтальпию, тепловой и массовый расходы контролируемого потока пара. Техническим результатом является создание устройства для контроля с нормируемой точностью значений степени сухости, энтальпии, теплового и массового расходов влажного пара в паропроводах среднего и большого сечения. 1 ил.
Наверх