Полимерная композиция для покрытий

Полимерная композиция может быть использована для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий и содержит полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°С 7,5-50 Па·с, наполнитель - мел гидрофобизированный, пластификатор, диоксид марганца, в качестве ускорителя 2,4,6 - трис-(диметиламинометил)-фенол, полиэтиленполиамин и глутаральанилина в массовом соотношении 1:1:1 соответственно, дополнительно наполнители технический углерод П-803, оксид цинка, известь - отсев. Технический результат - повышение физико-механических свойств и гидроизоляционных характеристик покрытия. 2 табл.

 

Изобретение относится к полимерным строительным композициям и может быть использовано для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий.

Известна композиция для герметизации и склеивания, включающая жидкий тиокол, натрий двухромовокислый, воду, наполнитель, четырехфункциональную эпоксидную смолу и растворитель, являющийся одновременно катализатором отверждения [Патент РФ №2058363, кл. С09К 3/10, опубл. 1996].

Недостатком композиции является многостадийность технологии получения, низкая жизнеспособность и высокое водопоглощение.

Известна герметизирующая композиция, включающая полисульфидный олигомер, наполнитель, диоксид марганца, аэросил, дифенилгуанидин, эпоксидную диановую смолу, замедлитель вулканизации, пластификатор [АС СССР №1054397, кл. С09К 3/10, опубл. 1983].

Недостатками композиции являются низкие: гидролитическая стабильность, физико-механические свойства и тиксотропность.

Известна герметизирующая композиция, включающая полисульфидный олигомер, диоксид титана, гидрофобизированный мел, аэросил, полиэтиленгликольадипинат, диоксид марганца, стеариновую кислоту, дифенилгуанидин и пластификатор [Патент РФ №2064955, кл. 6 С09К 3/10, опубл. 1996].

Недостатком данной композиции является недостаточная прочность при растяжении и относительное удлинение, высокое водопоглощение, а также необходимость ступенчатого режима вулканизации (2 стадии).

Наиболее близкой к предлагаемой по технической сути и достигаемому результату является герметизирующая и гидроизолирующая композиция, включающая полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°С 7,5-50 Па·с, мел гидрофобизированный, пластификатор, диоксид марганца и ускоритель при следующем соотношении компонентов, мас.ч.:

Полисульфидный олигомер100
Диоксид марганца9-15
Мел гидрофобизированный90-150
Пластификатор30-60
Растворитель1-6
Меркаптобензимидазолят цинка0,2-0,6

[Патент РФ №2283334, кл. С09К 3/10,опубл. 2006]

Недостатком данной композиции являются невысокие физико-механические свойства и гидролитическая стабильность. Кроме того, необходимость предварительного растворения ускорителя снижает технологичность процесса приготовления композиции.

Задачей предлагаемого изобретения является разработка состава композиции, обладающей повышенными физико-механическими и гидроизоляционными свойствами.

Техническим результатом является повышение физико-механических свойств и гидроизоляционных характеристик покрытия.

Поставленный технический результат достигается использованием композиции, включающей полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°С 7,5-50 Па·с, наполнитель - мел гидрофобизованный, пластификатор, диоксид марганца и ускоритель, отличающаяся тем, что в качестве ускорителя она содержит - 2,4,6-трис-(диметиламинометил)-фенола, полиэтиленполиамина и глутаральанилина в массовом соотношении 1:1:1 соответственно, дополнительно наполнители технический углерод П-803, оксид цинка, известь отсев при следующем соотношении компонентов, мас.ч.:

Полисульфидный олигомер100
Диоксид марганца9-15
Мел гидрофобизованный40-50
Пластификатор30-60
Ускоритель0,3-0,9
Технический углерод П-80320-25
Известь-отсев5-10
Оксид цинка30-40

Сущность изобретения заключается в использовании ускорителя, представляющего собой смесь ароматического третичного амина, алифатического амина и азометинового соединения. Такая комбинация, вследствие различной активности атомов азота в указанных соединениях, обеспечивает сильную поляризацию атомов водорода меркаптогрупп полисульфидного олигомера на всех стадиях процесса отверждения. При этом процесс формирования пространственной структуры вулканизатов протекает более плавно и обеспечивает узкое молекулярно-массовое распределение межузловых цепей. В 2,4,6-трис-(диметиламинометил)-феноле метальные группы смещают электронную плотность к третичному атому азота, делая его более подвижным за счет проявления индукционного эффекта. В присутствии диоксида марганца происходит образование комплексной соли 2,4,6-трис-(диметиламинометил)-фенола с вулканизующим агентом с последующим присоединением комплекса к сульфгидрильным группам олигомера. Затем концевой фрагмент диссоциирует с формированием тиоксильного макрорадикала (R-O-S°), который способствует образованию регулярной пространственной структуры в полисульфидном полимере, характеризующейся узким молекулярно-массовым распределением межузловых цепей. Полиэтиленполиамин, молекулы которого обладают высокой кинетической подвижностью, позволяет эффективно осуществлять поляризацию атомов водорода меркаптогрупп в разветвлениях цепи полисульфидного олигомера. Невысокая активность атома азота азометиновых групп глутаральанилина способствует процессу окисления непрореагировавших функциональных групп полисульфидного олигомера на завершающих стадиях структурообразования вулканизатов. Использование смеси третичного амина, алифатического амина и азометинового соединения обеспечивает более плотную упаковку сшитых макромолекул, что влечет за собой уменьшение сорбционной способности вулканизатов и повышение их физико-механических и гидроизоляционных показателей. Кроме того, введение в состав композиции адгезионноактивных аминогрупп приводит к увеличению прочности сцепления покрытия с защищаемым основанием. Применение 2,4,6-трис-(диметиламинометил)-фенола и полиэтиленполиамина, являющихся жидкостью и распределенного в их смеси глутаральанилина, исключает необходимость, как в случае прототипа, предварительного растворения ускорителя. Введение в состав композиции активного наполнителя - технического углерода П-803, обладающего щелочной реакцией водной вытяжки, способствует более эффективному окислению меркаптогрупп полисульфидного олигомера и повышению прочностных свойств покрытия. Сочетание в композиции указанного количества гидрофобизованного мела и технического углерода П-803 обеспечивает достаточное адсорбционное взаимодействие наполнителей с эластомерной матрицей полисульфидного олигомера и повышает агрегативную стабильность и седиментационную устойчивость композиций. Применение оксида цинка, участвующего в процессе окисления, позволяет увеличить глубину превращения меркаптогрупп полисульфидного олигомера, и как следствие, повысить физико-механические свойства покрытия. В присутствии извести-отсева, обладающей сильной щелочной реакцией водной вытяжки, создаются благоприятные условия для отверждения полисульфидных олигомеров. Кроме того, введение извести-отсева позволяет повысить стойкость вулканизатов к водным растворам щелочей.

При осуществлении заявленного изобретения покрытие при длительном контакте с водой в обычных условиях имеет более низкий уровень водопоглощения, высокие физико-механические свойства, высокую гидроизоляционную надежность и адгезию к основанию. Как видно из таблиц 1 и 2, при содержании ускорителя менее 0,3 мас.ч. ухудшаются физико-механические свойства покрытия и гидролитическая стабильность покрытия. Увеличение концентрации ускорителя свыше 0,9 приводит к снижению жизнеспособности составов. Массовое соотношение 1:1:1 соответственно 2,4,6-трис-(диметиламинометил)-фенола, полиэтиленполиамина и глутаральанилина является оптимальным, так как позволяет обеспечить протекание процесса окисления с высокой глубиной превращения меркаптогрупп полисульфидного олигомера. При использовании диоксида марганца в количестве менее 9 мас.ч. уменьшается густота сшивки вулканизата, физико-механические и гидроизоляционные свойства. Использование большего, чем 15 мас.ч., количества вулканизующего агента снижает жизнеспособность композиции.

При содержании мела менее 40 мас.ч. снижаются тиксотропные свойства композиции. Увеличение содержания мела свыше 50 мас.ч. приводит к ухудшению перерабатываемости композиции, снижению прочностных показателей и увеличению сорбционной способности покрытия.

Использование пластификатора в количестве менее 30 мас.ч. снижает равномерность распределения компонентов состава и затрудняет переработку смесей из-за высокой вязкости. Увеличение содержания пластификатора свыше 60 мас.ч. снижает прочностные и гидроизоляционные свойства.

При содержании технического углерода П-803 менее 20 мас.ч. снижаются прочностные свойства покрытия. Увеличение содержания технического углерода П-803 свыше 25 мас.ч. ухудшает перерабатываемость композиции.

Использование оксида цинка в количестве менее 30 мас.ч. снижает прочностные свойства покрытий. Увеличение содержания оксида цинка свыше 40 мас.ч. снижает время жизнеспособности и перерабатываемость композиции.

При содержании извести-отсева менее 5 мас.ч. снижаются прочностные свойства материалов. Увеличение содержания извести-отсева свыше 10 мас.ч. приводит к снижению гидролитической стабильности покрытия.

В качестве полисульфидного олигомера используются жидкие тиоколы, со среднечисленной молекулярной массой 1700-5500 (ГОСТ 12812-80). Вязкость тиоколов при 25°С составляет 7,5-50 Па*с. Вулканизующий агент - диоксид марганца (ГОСТ 4470-79). Ускоритель вулканизации - смесь 2,4,6-трис-(диметиламинометил)-фенола (ТУ 6-09-4136-75), полиэтиленполиамина (ТУ 602-594-70) и глутаральанилина. Глутаральанилин получают методом конденсации анилина с глутаровым альдегидом. Температура плавления глутаральанилина 112-114°С Молекулярная масса, выч./найд. 276 у.е. Элементный состав, % вычислено/найдено: С - 81,6/8,5, Н - 7,20/7,17, N - 11,18/10,50. Структурная формула глутаральанилина:

Известно применение глутаральанилина в качестве ингредиента резиновых смесей полифункционального действия [Новопольцева О.М. Диссертация канд. техн. наук: 02.00.06; защищена 26.09.1994. - Волгоград. ВолгГТУ].

Наполнитель - мел гидрофобизированный (ТУ 21-143-84), полученный осаждением водной суспензии в присутствии растительных жирных кислот. В качестве пластификатора используются соединения совместимые с тиоколовыми олигомерами, например флотореагент-оксаль (ТУ 38 103429-88) и хлорпарафин ХП-470 (ТУ 6-01-16-90). В качестве наполнителя использовались - технический углерод П-803 (ГОСТ 7885-86), оксид цинка (ГОСТ 204-84), известь-отсев (отход производства обожженной извести) (ТУ 5744-191-05763458-94).

Для изготовления композиции используется смесительное оборудование, обеспечивающее получение гомогенной суспензии компонентов смеси. Смесь наносится равномерным слоем на основание и выдерживается до полного отверждения при 15-25°С в течение 7-10 суток.

Испытания отвержденных образцов проводят по известным методикам: условная прочность и относительное удлинение в момент разрыва по ГОСТ 270-75, твердость по ГОСТ 263-75, водопоглощение и прочность сцепления с бетоном по ГОСТ 26578-85, время жизнеспособности по ГОСТ 12812-80. Состав и свойства полимерной композиции для покрытия приведены в табл.1 и 2.

Пример 1. В шаровую мельницу объемом 500 см3, в указанной последовательности, загружают 100 г полисульфидного олигомера, 30 г пластификатора (в данном примере хлорпарафин ХП-470), 40 г мела гидрофобизированного, 20 г технического углерода П-803, 30 г оксида цинка, 5 г извести-отсева, 0,1 г 2,4,6-трис-(диметиламинометил)-фенола, 0,1 г полиэтиленполиамина и 0,1 г глутаральанилина. Мельницу включают и проводят смешение в течение 3-5 часов. Полученную массу выгружают в стакан, добавляют 9 г диоксида марганца, перемешивают в смесителе в течение 5 мин, затем заливают в форму. Композицию выдерживают до полного отверждения в течение 7-10 суток при 25°С.

Аналогичным способом готовятся композиции по примерам 2-10, состав которых указан в таблице 1, а свойства - в таблице 2.

Как видно из таблицы 2, наилучшие показатели имеют композиции состава по примерам 1-6.

Таблица 1
Компоненты композицииСодержание компонентов в композиции, мас.ч. по примерамПрототип
1234567891011
Полисульфидный олигомер100100100100100100100100100100100
Мел гидрофобизированный40404050504050208050150
Диоксид марганца91113151510718151115
Меркаптобензимидазолят цинка----------0,6
Флотореагент-оксаль--506050-20--5060
Хлорпарафин ХП-4703040---40-8060--
Растворитель----------6
Ускоритель0,30,60,60,90,40,40,11,40,40,2-
Технический углерод П-80320252520252020103525-
Оксид цинка30403040405020403060-
Известь-отсев551010510220510-
Таблица 2
ПоказательПримерПрототип
1234567891011
Жизнеспособность, мин140130140130100100150150110100110
Твердость по Шору А, усл. ед.6365626670745555727560
Условная прочность при растяжении, МПа2,662,742,652,742,792,782,432,252,682,612,52
Относительное удлинение, %370380410420410390340270330340330
Прочность сцепления с бетоном, МПа0,740,770,830,800,790,780,680,770,750,730,65
Водопоглощение при 23+2°С через 120 сут, мас.%16,316,216,916,716,516,017,517,217,016,817,1

Пример по прототипу. В шаровую мельницу объемом 500 см3 загружают 100 г полисульфидного олигомера, 60 г флотореагента-оксаль, 150 г гидрофобизированного мела и 0,6 г меркаптобензимидазолята цинка, предварительно растворенного в 6 г растворителя. Мельницу включают и проводят диспергирование в течение 3-5 часов. Полученную массу выгружают в стакан, добавляют 15 г диоксида марганца, перемешивают вручную в течение 5 мин, затем заливают в форму. Композицию выдерживают до полного отверждения в течение 7-10 суток при 25°С.

Таким образом, предлагаемая композиция обеспечивает получение эластомерного материала с повышенными гидроизоляционными и физико-механическими свойствами. Композиция может использоваться для создания герметизирующих, гидроизолирующих, кровельных и антикоррозионных покрытий. Достаточная тиксотропность состава и свойства покрытия позволяют применять композицию для герметизации вертикальных примыканий бетонных и металлических оснований.

Полимерная композиция для покрытий, включающая полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°С 7,5-50 Па·с, наполнитель - мел гидрофобизированный, пластификатор, диоксид марганца и ускоритель, отличающаяся тем, что в качестве ускорителя она содержит 2,4,6-трис-(диметиламинометил)-фенол, полиэтиленполиамин и глутаральанилин в массовом соотношении 1:1:1 соответственно, дополнительно наполнители технический углерод П-803, оксид цинка, известь-отсев при следующем соотношении компонентов, мас.ч.:

Полисульфидный олигомер100
Диоксид марганца9-15
Мел гидрофобизированный40-50
Пластификатор30-60
Ускоритель0,3-0,9
Технический углерод П-80320-25
Оксид цинка30-40
Известь-отсев5-10



 

Похожие патенты:
Изобретение относится к составам, а именно к антикоррозионной композиции, применяемой в технике для антикоррозионной защиты металлов, которая может быть использована для длительной защиты оборудования химических цехов, теплоэлектростанций, эксплуатируемых в условиях переменного воздействия растворов кислот и щелочей.
Изобретение относится к композициям для пропитки глазурованной, эмалированной, металлизированной поверхности бетонных, железобетонных, известково-песчаных строительных изделий.
Изобретение относится к нефтехимии и химии высокомолекулярных соединений. .
Изобретение относится к герметизирующим композициям на основе низкомолекулярного силоксанового каучука, а именно к составу однокомпонентного герметика, применяемого для герметизации различных соединений, требующих эластичности, маслостойкости и термостойкости.

Изобретение относится к области изготовления изделий из наполненного термореактивного материала (ТПМ), а конкретно - к разработке состава для герметизации элементов формообразующей оснастки, используемого при формовании изделий из ТПМ.
Изобретение относится к составам полимерных композиций, используемых для герметизации деформационных швов аэродромных и дорожных цементобетонных покрытий, подверженных значительным эксплуатационным воздействиям и температурным колебаниям.
Изобретение относится к области ракетной техники и касается способа получения теплостойкого эпоксидного компаунда для армированных стеклопластиковых корпусов, используемых при изготовлении жестких бронечехлов для вкладных зарядов РДТТ.
Изобретение относится к области производства антикоррозионных компаундов, предназначенных для нанесения защитных антикоррозионных покрытий при изготовлении кабелей.
Изобретение относится к герметизирующим уплотняющим пастам используемых в запорной арматуре трубопроводов. .

Изобретение относится к области получения антикоррозионных покрытий, перерабатываемых методом кистевого нанесения и распыления. .
Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления гидроизолирующих, герметизирующих и антикоррозионных композиций, перерабатываемых методом заливки и распыления.
Изобретение относится к области получения покрытий на основе полисульфидного каучука, применяемого в технике антикоррозионной защиты металлов. .

Изобретение относится к битуминозным составам для производства кровельных и гидроизоляционных материалов, может быть использовано для гидроизоляции строительных конструкций и герметизации швов в автодорожном строительстве.

Изобретение относится к полимерным строительным композициям и может быть использовано для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий, покрытий беговых дорожек и спортивных залов
Изобретение относится к полимерным строительным композициям и может быть использовано для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий, покрытий беговых дорожек и спортивных залов
Изобретение относится к полимерным строительным композициям и может быть использовано для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий

Изобретение относится к полимерным строительным композициям и может быть использовано для изготовления эластомерных герметизирующих и гидроизоляционных материалов, кровельных и антикоррозионных покрытий
Наверх