Теплогенератор

Изобретение относится к теплотехнике, в частности к нагревательным установкам, работающим на принципе нагрева без применения электрических, плазменных и других нагревателей, и может быть использовано в качестве источника тепловой энергии в системах отопления и горячего водоснабжения. Технический результат: повышение эффективности нагрева жидкости. Теплогенератор содержит насос, всасывающий и напорный, патрубки которого соединены трубопроводом. В трубопроводе размещены струйный аппарат с соплом и теплообменник. Сопло входит в струйный аппарат тангенциально под углом к вертикали и соединено с напорным патрубком насоса. Выход струйного аппарата соединен с теплообменником, который своим вторым входом соединен с всасывающим патрубком насоса. Струйный аппарат состоит из полого усеченного конуса большего размера, имеющего дно с размещенным по центру выходным отверстием в своем основании, и глухое дно на своей вершине, полого усеченного конуса меньшего размера, жестко закрепленного своей вершиной внутри усеченного конуса большего размера на дне соосно выходному отверстию. 2 ил.

 

Изобретение относится к теплотехнике, в частности к нагревательным установкам, работающим на принципе нагрева без применения электрических, плазменных и других нагревателей, и может быть использовано в качестве источника тепловой энергии в системах отопления и горячего водоснабжения для подогрева технологических жидкостей.

Известен теплогенератор (см. патент RU N 2161289, МПК F24Н 3/02, F24J 3/00, 27.12.2000 г.), принятый за прототип. Теплогенератор содержит насос, всасывающий и напорный патрубки которого соединены трубопроводом с размещенными в нем теплообменником и струйным аппаратом с соплом. Струйный аппарат соединен с всасывающим патрубком. Сопло соединено с напорным патрубком и входит в струйный аппарат тангенциально, под углом к вертикали с возможностью регулирования угла наклона.

Недостатком прототипа является низкая теплопроизводительность из-за высоких потерь давления на входе в сопло и низкой теплообразующей эффективности струйного аппарата.

Предлагаемым изобретением решается задача: повышение кпд теплогенератора.

Технический результат, получаемый при осуществлении изобретения, заключается в повышении эффективности нагрева жидкости в струйном аппарате и во всем устройстве в целом, оптимизации схемного решения устройства.

Указанный технический результат достигается тем, что в теплогенераторе, содержащем насос, всасывающий и напорный патрубки которого соединены трубопроводом с размещенными в нем теплообменником и струйным аппаратом с соплом, новым является то, что струйный аппарат выполнен в виде двух усеченных конусов, расположенных соосно один внутри другого и развернутых относительно друг друга на 180°, усеченный конус большего размера имеет в своем основании дно с отверстием, являющимся выходным отверстием струйного аппарата, и глухое дно на вершине, усеченный конус меньшего размера жестко установлен своей вершиной на основании усеченного конуса большего размера соосно с выходным отверстием, теплообменник соединен с выходным отверстием струйного аппарата и всасывающим патрубком насоса.

Выполнение струйного аппарата в виде двух усеченных конусов, расположенных соосно один внутри другого и развернутых относительно друг друга на 180°, обусловлено необходимостью изменения направления потока жидкости, поступающего в струйный аппарат тангенциально под углом к вертикали через сопло, с одновременным изменением проходного сечения, что сопровождается выделением тепловой энергии. Глухое дно, выполненное на вершине конуса большего размера, является тормозом для потока жидкости, движущегося между конусами. В данной области при резком торможении и изменении направления потока жидкости происходит значительное выделение тепловой энергии.

Жидкость, изменившая направление своего движения, устремляется, нагреваясь, к отверстию на вершине усеченного конуса меньшего диаметра, которое размещено соосно с отверстием на дне основания усеченного конуса большего диаметра.

Размещение теплообменника между выходом струйного аппарата и всасывающим патрубком насоса обусловлено необходимостью исключения потерь скорости и давления жидкости, возникающих при размещении теплообменника в напорной магистрали. Это позволяет подавать жидкость к соплу струйного аппарата с наименьшими потерями и увеличить теплопроизводительность.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на фиг.1 показана общая схема теплогенератора, на фиг.2 - общая схема струйного аппарата.

Теплогенератор содержит насос 1, всасывающий 2 и напорный 3 патрубки которого соединены трубопроводом 4. В трубопроводе 4 размещены струйный аппарат 5 с соплом 6 и теплообменник 7. Сопло 6 входит в струйный аппарат 7 тангенциально под углом к вертикали и соединено с напорным патрубком 3 насоса 1. Выход струйного аппарата 5 соединен с теплообменником 7, которые своим вторым входом соединен с всасывающим патрубком 2 насоса 1.

Струйный аппарат 5 состоит из полого усеченного конуса 8 большего размера, имеющего дно 9 с размещенным по центру выходным отверстием 10 в своем основании и глухое дно 11 на своей вершине, полого усеченного конуса 12 меньшего размера, жестко закрепленного своей вершиной внутри усеченного конуса 8 большего размера на дне 9 соосно выходному отверстию 10.

Теплогенератор работает следующим образом. Под давлением от насоса 1 жидкость, минуя напорный патрубок 3, движется к трубопроводу 4 и через тангенциально установленное относительно усеченного конуса 8 сопло 6 поступает внутрь струйного аппарата 5 и спиралеобразно движется к дну 11. Вследствие уменьшения проходного сечения по мере продвижения жидкости давление возрастает с одновременным выделением тепловой энергии. Далее закрученная жидкость, достигая дна 11, меняет направление своего движения на 180° и с выделением тепловой энергии перемещается спиралеобразно внутри усеченного конуса 12 к выходному отверстию 10, размещенному по центру дна 9. Дальнейшее движение нагретой жидкости осуществляется через теплообменник 7 к всасывающему патрубку 2 насоса 1.

Теплогенератор, содержащий насос, всасывающий и напорный, патрубки которого соединены трубопроводом с размещенными в нем теплообменником и струйным аппаратом с соплом, отличающийся тем, что струйный аппарат выполнен в виде двух усеченных конусов, расположенных соосно один внутри другого и развернутых относительно друг друга на 180°, усеченный конус большего размера имеет в своем основании дно с отверстием, являющимся выходным отверстием струйного аппарата, и глухое дно на вершине, усеченный конус меньшего размера жестко установлен своей вершиной на основании усеченного конуса большего размера соосно с выходным отверстием, теплообменник соединен с выходным отверстием струйного аппарата и всасывающим патрубком насоса.



 

Похожие патенты:

Изобретение относится к системам теплоснабжения, в частности к теплогенерирующим установкам. .

Изобретение относится к гелиотехнике, в частности к солнечным тепловым коллекторам, и может быть использовано в теплоснабжении зданий и сооружений. .

Изобретение относится к энергетике и может работать в режимах теплогенератора, насоса, газодувки, смесителя, гомогенезатора, диспергатора, химического реактора и др.

Изобретение относится к области энергетики, в частности для отопления жилых и производственных помещений и горячего водоснабжения. .

Изобретение относится к теплотехнике и предназначено для нагревания жидкостей для различных отраслей народного хозяйства. .

Изобретение относится к электротехнике, к электрогенерирующим установкам, работающим на низкопотенциальной воде, и может быть применено на сбросе в открытый водоем воды, охлаждающей конденсаторы атомных и тепловых электростанций.

Изобретение относится к теплогенераторам гидродинамического типа и может использоваться для подогрева жидких сред и для отопления помещений. .

Изобретение относится к теплотехнике и может быть использовано в качестве источника тепловой энергии в системах отопления и горячего водоснабжения для подогрева технологической жидкости.

Изобретение относится к энергетике, в частности к устройствам для получения тепла, образующегося иначе, чем в результате сжигания топлива

Изобретение относится к области теплотехники, к конструкциям агрегатов, преобразующих кинетическую энергию потока жидкости в тепловую, и может быть использовано для отопления зданий и сооружений

Изобретение относится к области геотермальной энергетики

Изобретение относится к теплотехнике, а именно к теплогенераторам

Изобретение относится к области энергетики и может быть использовано для отопления жилых и производственных помещений и горячего водоснабжения

Изобретение относится к теплотехнике, а именно к устройствам, содержащим вращающиеся элементы для нагревания текучих сред, и может быть использовано для тепло- и горячего водоснабжения объектов промышленного и бытового назначения, нагрева технологических жидкостей

Изобретение относится к теплотехнике, а именно к теплопарогенераторам, и может быть использовано для теплоснабжения помещений различного назначения

Изобретение относится к теплотехнике, а именно к теплогенераторам, и может быть использовано для отопления и горячего водоснабжения различных стационарных и временно развернутых помещений любого назначения

Изобретение относится к кавитационным теплогенераторам и может быть использовано преимущественно в автономных замкнутых системах теплоснабжения, а также для нагрева воды в системах горячего водоснабжения и нагрева жидкостей в технологических системах

Изобретение относится к многоцелевым возбудителям нелинейных колебаний и кавитации в сплошных средах и может быть использовано в энергетике, для повышения КПД паровых котлов (подогрев воды, нагнетаемой питательными насосами котлов), для увеличения полноты и сокращения токсичности сгорания тяжелых фракций нефти (путем кавитационно-волновой обработки паромазутной смеси перед подачей в горелки или камеры сгорания), для сокращения кратности прокачки рабочего тела в теплоемких производственных процессах нефтехимии на основе подачи содержащего метан газа в кавитирующее рабочее тело
Наверх