Стенд для исследования гибких поливных трубопроводов со встроенными в них капельницами

Изобретение относится к области испытательной техники и направлено на обеспечение получения характеристик расхода поливной воды каждой капельницы в полости гибкого поливного трубопровода, как снятого с эксплуатируемой системы капельного орошения, так и вновь созданных и приобретенных в разных фирмах-производителях. Этот результат обеспечивается за счет того, что стенд содержит водосборный бассейн с коническим дном, подводящий и отводящий трубопроводы с задвижками и водораспределительную трубу со сменными разбрызгивающими устройствами. Стенд снабжен последовательно смонтированными в гидравлической сети герметичной емкостью, насосом, фильтром, регулятором давления, гибким рукавом, телескопической штангой, мерными цилиндрами, контрольными манометрами, термометром и ареометром. Установленная за задвижкой подводящего трубопровода герметичная емкость имеет впускной клапан для доступа воздуха из атмосферы, стравливающий клапан, водомерное устройство, вентиль для сброса взвесей, дренажа и воды. Фильтр для удаления взвесей и минерального сора смонтирован между насосом и регулятором давления посредством вентиля с дренажной сетью. На входе и выходе регулятора давления размещены контрольные манометры. Фильтр имеет трубопровод для подачи рециркуляционного потока. Испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами в качестве водораспределительной трубы закреплен скобами на телескопической штанге. Упомянутая телескопическая штанга с подвижными элементами в ее полости смонтирована посредством подшипника скольжения на оси. Ось размещена на верхней части стойки. Основание стойки имеет противовес. Стойка с противовесом размещены в водосборном бассейне с коническим дном. Упомянутая телескопическая штанга раскосом кинематически связана со стойкой. Раскос обеспечивает фиксируемые углы наклона штанги к вертикальной оси симметрии стойки. Испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами гидравлически связан посредством тройника и гибкого рукава с фильтром. Тройник установлен в непосредственной близости к оси поворота телескопической штанги. Под каждой капельницей испытуемого гибкого поливного трубопровода посредством маятникового подвеса смонтирован мерный цилиндр. Маятниковый подвес с мерным цилиндром имеют возможность опорожнения воды в водосборный бассейн с коническим дном. 3 з.п. ф-лы, 7 ил.

 

Изобретение относится к области исследования в сельском хозяйстве и мелиорации и касается стендового оборудования для ускоренных испытаний в широком диапазоне условий, максимально приближенных к производственным, и предназначено для установления характеристик гибких поливных трубопроводов со встроенными капельницами с широким спектром их конструктивного исполнения для систем капельного орошения.

Известен способ проведения имитационных исследований рабочих органов сельскохозяйственных машин, содержащий подбор материала для изготовления моделей растений с геометрическими параметрами, соответствующими натуральному растению, и определение параметров рабочих органов с применением моделей, в котором, с целью расширения возможностей применения моделей при исследованиях, после изготовления моделей растений из выбранного материала измеряют взаимодействие рабочего органа как с моделью, так и с натуральным растением с учетом дополнительных факторов, влияющих на проявление различий в физико-механических свойствах растения и его модели, по результатам этих измерений определяют различие в их взаимодействии, исходя из соотношения К=Уn/Уm, где Уn - величина взаимодействия натурального растения; Уm - величина взаимодействия модели растения, после этого исследование рабочего органа проводят на моделях растения, а затем с учетом полученного соотношения взаимодействия определяют параметры рабочих органов при взаимодействии с натуральными сельскохозяйственными растениями; подбор материала модели производят без учета физико-механических свойств натурального сельскохозяйственного растения (SU, авторское свидетельство №1257434. А1. Мкл.4 G01М 19/00, А01D 45/25. Способ проведения имитационных исследований рабочих органов сельскохозяйственных машин / Н.В.Романовский, A.M.Валге, А.А.Попов, Н.Н.Романовский (СССР). - Заявка №3874933/30-15; заявлено 22.03.1985; опубл. 15.09.1986, бюл. №34 // Открытия. Изобретения. - 1986. - №34).

В настоящее время на российском рынке более 20 зарубежных фирм предлагают системы капельного орошения с фильтрами, насосными станциями, водораспределительной сетью, средствами внесения растворов минеральных удобрений, гибкими поливными трубопроводами со встроенными в них капельницами. Однако характеристики расхода капельниц по длине трубопровода и срок их службы не соответствует данным в рекламных проспектах. Необходимы испытания реальных конструкций, а не имитационных моделей.

Известен стенд для разбрызгивающих устройств, содержащий водосборный бассейн с коническим дном, подводящий и подключенный к центру, отводящий трубопроводы, а также соединенную с подводящим трубопроводом водораспределительную трубу со сменными разбрызгивающими устройствами, в котором, с целью обеспечения исследований различных типов устройств в различных метеоусловиях, труба установлена с возможностью вращения вокруг продольной оси, а на отводящем трубопроводе дополнительно установлена задвижка (SU, авторское свидетельство №1617318. А1. Мкл.5 G01М 19/00. Стенд для исследования разбрызгивающих устройств / A.M.Попов (СССР). - Заявка №4642810/24-06; заявлено 30.01.1989; опубл. 30.12.1990, бюл. №48 // Открытия. Изобретения. - 1990. - №48).

К недостаткам описанного стенда, несмотря на схожесть решаемой технической задачи, относятся ограниченные функциональные возможности.

Сущность заявленного изобретения.

Задача, на решение которой направленно заявленное изобретение, - получение устойчивых эксплуатационных характеристик гибких поливных трубопроводов со встроенными капельницами систем капельного орошения.

Технический результат - снижение затрат труда и времени на проведение испытаний и моделирование реальных условий работы поливных трубопроводов при эксплуатации на сложном рельефе орошаемой площади.

Указанный технический результат в известном стенде конструктивного исполнения для исследования гибких поливных трубопроводов со встроенными в их полостях капельницами, содержащем водосборный бассейн с коническим дном, подводящий и отводящий трубопроводы с задвижками и водораспределительную трубу со сменными разбрызгивающими устройствами, согласно изобретению стенд снабжен последовательно смонтированными в гидравлической сети герметичной емкостью, насосом, фильтром, регулятором давления, гибким рукавом, телескопической штангой, мерными цилиндрами, контрольными манометрами, термометром и ареометром, при этом установленная за задвижкой подводящего трубопровода герметичная емкость имеет впускной клапан для доступа воздуха из атмосферы, гидравлический клапан, водомерное устройство, вентиль для сброса взвесей дренажа и воды, фильтр для удаления взвесей и минерального сора смонтирован между насосом и регулятором давления, и посредством вентиля с дренажной сетью, на входе и выходе регулятора давления размещены контрольные манометры и он имеет трубопровод для подачи рециркуляционного потока, испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами, в качестве водораспределительной трубы закреплен скобами на телескопической штанге, упомянутая телескопическая штанга с подвижными элементами в ее полости смонтирована посредством подшипника скольжения на оси, размещенной на верхней части стойки, основание стойки имеет противовес и размещено в водосборном бассейне с коническим дном, упомянутая телескопическая штанга раскосом кинематически связана со стойкой с фиксируемыми углами наклона штанги к вертикальной оси симметрии стойки, испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами гидравлически связан посредством тройника и гибкого рукава с фильтром, при этом тройник установлен в непосредственной близости к оси поворота телескопической штанги, под каждой капельницей испытуемого гибкого поливного трубопровода посредством маятникового подвеса смонтирован медный цилиндр, имеющий возможность опорожнения в водосборный бассейн с коническим дном; каждый маятниковый подвес мерного цилиндра выполнен в виде U-образного элемента с проушинами, направленными вверх, и кольца, соединяющего проушины, при этом на концах проушин выполнены фигурные пазы; каждый маятниковый подвес мерного цилиндра снабжен возможностью продольного перемещения на телескопической штанге и зафиксирован посредством О-образного кронштейна, размещенного с охватом на штанге, при этом упомянутый кронштейн снабжен соосными ступенчатыми штифтами для фиксирования в рабочем положении проушин маятникового подвеса и стопором положения кронштейна на поверхности телескопической штанги; длина подвижных частей штанги равна или меньше половины общей длины штанги.

Изобретение поясняется чертежами.

На фиг.1 схематично представлена конструктивно-гидравлическая схема стенда для исследования гибких поливных трубопроводов со встроенными в них капельницами с имитацией сложного рельефа орошаемого участка.

На фиг.2 изображена телескопическая штанга с подвешенными фрагментами гибких поливных трубопроводов с капельницами в их полостях в момент их испытания.

На фиг.3 - сечение А-А на фиг.2, поперечно-вертикальное сечение мерного цилиндра, маятникового подвеса, О-образного кронштейна и подвижных элементов, и самой телескопической штанги.

На фиг.4 - сечение Б-Б на фиг.2, поперечно-вертикальный разрез верхней части стойки и ее оси, телескопической балки с подшипником скольжения в ее средней части, тройника и гибкого водопроводящего трубопровода.

На фиг.5 - вид В на фиг.2, размещение стойки и штанги в водосборном бассейне.

На фиг.6 в аксонометрическом виде представлен маятниковый подвес мерного цилиндра.

На фиг.7 показан О-образный кронштейн для фиксации мерного цилиндра на телескопической штанге под капельницей, встроенной в полости гибкого поливного трубопровода.

Сведения, подтверждающие возможность реализации заявленного изобретения, заключаются в следующем.

Стенд для исследования гибких поливных трубопроводов 1 со встроенными в них капельницами 2 содержит водосборный бассейн 3 с коническим дном, подводящий трубопровод 4 и отводящий трубопровод 5, задвижки 6, 7 и 8 и водораспределительную трубу со сменными разбрызгивающими устройствами (см. фиг.1).

Стенд снабжен последовательно смонтированными в гидравлической сети герметичной емкостью 9, насосом 10, фильтром 11, регулятором давления 12, гибким рукавом 13, телескопической штангой 14, мерными цилиндрами 15, контрольными манометрами 16 и 17, термометром и ареометром.

Установленная за задвижкой 6 подводящего трубопровода 4 герметичная емкость 9 имеет впускной клапан 18 для доступа воздуха из атмосферы, стравливающий клапан 19, водомерное устройство 20. В донной части емкости 9 размещена задвижка 7 (вентиль) для сброса взвесей, дренажа грязной воды и сброса остатка воды после серии опытов при ее насыщении растворимыми в воде или минеральными удобрениями, или ростовыми препаратами, или гербицидами, или фунгицидами.

Фильтр 11 для удаления взвесей и минерального сора смонтирован между насосом 10 и регулятором давления 12 и посредством задвижки 8 (вентиля) соединен с дренажной сетью (отводящим трубопроводом 5).

На входе и выходе регулятора давления 12 размещены контрольные манометры 16 и 17. Регулятор давления 12 имеет трубопровод 21 для подачи рециркуляционного потока.

Термометр и ареометр периодически размещают в мерный цилиндр 15.

Испытуемый гибкий поливной трубопровод 1 со встроенными в его полости капельницами 2 в качестве водораспределительной трубы закреплен скобами 22 на телескопической штанге 14 (см. фиг.2 и 4).

Упомянутая телескопическая штанга 14 с подвижными элементами 23 и 24 в ее полости смонтирована посредством подшипника скольжения 25 на оси 26 (см. фиг.4). Ось 26 смонтирована на верхней части стойки 27. Перемещение штанги 14 с подшипником скольжения 25 вдоль оси 26 ограничена стопором 28. Основание стойки 27 имеет противовес 29 (см. фиг.1, 2 и 5). Стойка 27 и противовес 29 размещены в водосборном бассейне 3 с коническим дном. Водосборный бассейн 3 каналом 30 гидравлически связан с отводящим трубопроводом 5.

Упомянутая телескопическая штанга 14 раскосом 31 (см. фиг.1 и 2) кинематически связана со стойкой 27 с фиксируемыми углами наклона штанги 14 к вертикальной оси симметрии стойки 27 для имитации сложного рельефа при эксплуатации гибкого поливного трубопровода 1 со встроенными капельницами на склонах и в других условиях.

Испытуемый гибкий поливной трубопровод 1 со встроенными в его полости капельницами 2 гидравлически связан посредством тройника 32 и гибкого рукава 13 с фильтром 11 через регулятор давления 12 (см. фиг.1, 2 и 5). Тройник 32 установлен в непосредственной близости к оси 26 поворота телескопической штанги 14. Этим достигаются сопоставимые условия испытаний капельниц 2 при моделировании сложного рельефа.

Под каждой капельницей 2 испытуемого гибкого поливного трубопровода 1 смонтирован мерный цилиндр 15 посредством маятникового подвеса 33 (см. фиг.1, 2, 3, 5 и 6). Каждый мерный цилиндр 15 с водой имеет возможность опорожнения в водосборный бассейн 3 с коническим дном.

Каждый маятниковый подвес 33 мерного цилиндра 15 (см. фиг.6) выполнен в виде U-образного элемента с проушинами 34 и 35 и кольца 36. Проушины 34 и 35 направлены вверх. Кольцо 36 соединяет проушины 34 и 35 в неразъемный узел. На концах проушин 34 и 35 выполнены фигурные пазы 37. В качестве материала маятникового подвеса 33 может быть использована стальная лента сечением 0,6×20 мм или полоса из пластических масс.

Каждый маятниковый подвес 33 мерного цилиндра 15 снабжен возможностью продольного перемещения на телескопической штанге 14. Маятниковый подвес 33 на штанге 14 зафиксирован посредством О-образного кронштейна 38 (см. фиг.7). Кронштейн 38 размещен с охватом на штанге 14 или на ее подвижных элементах 23 и 24. Упомянутый кронштейн 38 снабжен соосными штифтами 39 и 40 для фиксирования в рабочем положении проушин 34 и 35 маятникового подвеса 33 совместно с мерными цилиндрами 15. На верхней грани О-образного кронштейна 38 вварена резьбовая втулка 41 для ввинчивания винта 42 в качестве стопора положения кронштейна 38 на телескопической штанге 14 или ее подвижных элементах 23 и 24. Длина подвижных элементов 23 и 24, вдвигаемых в штангу 14, равна или меньше 1/2 от общей длины штанги 14.

Стенд для исследования гибких поливных трубопроводов со встроенными в них капельницами функционирует следующим образом.

В герметичной емкости 9 открывают последовательно задвижки 7 и 6. Из подводящего трубопровода 4 вода под напором поступает в полость емкости 9 и через задвижку 7 минеральный сор отводится в трубопровод 5. После промывки емкости 9 задвижку 7 закрывают. Уровень воды в герметичной емкости 9 отслеживают по водомерному устройству 20. Воздух из емкости 9 стравливается в атмосферу через клапан 19. При заполненной емкости 9 задвижку 6 закрывают.

Далее на тройник 32 быстросъемными хомутами фиксируют концы гибких поливных трубопроводов 1, а сами поливные трубопроводы 1 скобами 22 фиксируют на штанге 14. Для получения достоверных результатов испытаний на штанге 14 должно быть помещено не менее 15...18 капельниц 2. В гибких поливных трубопроводах 1 капельницы 2 размещают с шагом 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 1,1 и 1,4 м для возделывания широкого спектра сельскохозяйственных культур. В период испытаний поливной трубопровод 1 или его фрагменты должны располагаться по прямой линии для избежания нехарактерных местных гидравлических сопротивлений. По этой причине подвижные элементы 23 и 24 на плечах телескопической штанги 14 либо выдвигают, либо вдвигают соответственно рабочей длине гибкого поливного трубопровода 1.

На штанге 14 и ее подвижных элементах 23 и 24 под капельницами устанавливают О-образные кронштейны 38 с маятниковыми подвесами 33. В маятниковые подвесы 33 устанавливают мерные цилиндры 15 с ценой деления не более 20 мл. Штангу 14 раскосом 31 фиксируют в горизонтальном положении (фиксируемый угол равен 90°).

Далее включают в работу электропривод насоса 10. Насосом 10 вода из герметичной емкости 9 подается в полость фильтра 11. Фильтром 11 удаляют взвеси и минеральный сор крупнее 100 мкм. Очищенная вода подается в регулятор давления 12. Им создается давление не выше 1 bar (0,01 МПа) и по гибкому рукаву 13 вода поступает в тройник 32. Из тройника 32 вода распределяется в левый и правый фрагмент поливного трубопровода 1. Свободные концы поливного трубопровода 1 закрыты заглушками. Выявляют течи воды в гидравлической сети стенда и, при их наличии, устраняют.

В течение 30 минут работы насоса 10 стенда визуально оценивают объем воды в мерных цилиндрах 15 и, если объем воды не отличается резкими перепадами в объемах, приступают к проведению опыта. Из мерных цилиндров 15 сливают воду в водосборный бассейн 3. При этом регулятор давления 12 был переведен в режим сброса воды.

Затем регулятором давления 12 устанавливают рабочее давление, отслеживаемое контрольным манометром 17. Время работы стенда отслеживают по секундомеру. По истечении 30 минут вновь регулятор давления 12 приводят в режим сброса воды. В каждом мерном цилиндре 15 устанавливают объем выданной капельницей 2 воды. Замеряют термометром температуру выданной воды и ее плотность. Далее повышают давление воды до 2, 3, 4, 6 и 8 bar и устанавливают производительность каждой капельницы 2 в л/ч.

Затем штангу 14 последовательно устанавливают под углом 5°, 10°, 15°, 30°, 45° и 60° к горизонту и устанавливают производительность капельниц 2 в диапазоне давлений 1-8 bar. По полученным экспериментальным данным строят расходные характеристики капельниц 2 и устанавливают предельные отклонения от средней ошибки и точность в результатах измерений.

Описанный стенд позволяет проводить исследования гибких поливных трубопроводов 1 с капельницами 2 с живым сечением до 225 мм2 и более с различными конструктивными исполнениями капельниц 2 при минимальных затратах труда и времени.

1. Стенд для исследования гибких поливных трубопроводов со встроенными в них капельницами, содержащий водосборный бассейн с коническим дном, подводящий трубопровод и отводящий трубопровод, задвижки и водораспределительную трубу со сменными разбрызгивающими устройствами, отличающийся тем, что он снабжен последовательно смонтированными в гидравлической сети герметичной емкостью, насосом, фильтром, регулятором давления, гибким рукавом, телескопической штангой, мерными цилиндрами, контрольными манометрами, термометром и ареометром, при этом установленная за задвижкой подводящего трубопровода герметичная емкость имеет впускной клапан для доступа воздуха из атмосферы, стравливающий клапан, водомерное устройство, вентиль для сброса взвесей, дренажа и воды, фильтр для удаления взвесей и минерального сора смонтирован между насосом и регулятором давления и посредством вентиля - с дренажной сетью, на входе и выходе регулятора давления размещены контрольные манометры и он имеет трубопровод для подачи рециркуляционного потока, испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами в качестве водораспределительной трубы закреплен скобами на телескопической штанге, упомянутая телескопическая штанга с подвижными элементами в ее полости смонтирована посредством подшипника скольжения на оси, размещенной на верхней части стойки, основание стойки имеет противовес и размещено в водосборном бассейне с коническим дном, упомянутая телескопическая штанга раскосом кинематически связана со стойкой с фиксируемыми углами наклона штанги к вертикальной оси симметрии стойки, испытуемый гибкий поливной трубопровод со встроенными в его полости капельницами гидравлически связан посредством тройника и гибкого рукава с фильтром и регулятором давления, тройник установлен в непосредственной близости к оси поворота телескопической штанги, под каждой капельницей испытуемого гибкого поливного трубопровода посредством маятникового подвеса смонтирован мерный цилиндр с возможностью опорожнения в водосборный бассейн с коническим дном.

2. Стенд по п.1, отличающийся тем, что каждый маятниковый подвес мерного цилиндра выполнен в виде U-образного элемента с проушинами, направленными вверх, и кольца, соединяющего проушины, на концах проушин выполнены фигурные пазы.

3. Стенд по п.1, отличающийся тем, что каждый маятниковый подвес мерного цилиндра снабжен возможностью продольного перемещения на телескопической штанге и зафиксирован посредством O-образного кронштейна, размещенного с охватом на штанге, при этом упомянутый кронштейн снабжен соосными ступенчатыми штифтами для фиксирования в рабочем положении проушин маятникового подвеса и стопором положения кронштейна на поверхности телескопической штанги.

4. Стенд по п.1, отличающийся тем, что длина подвижных элементов штанги равна 1/2 общей длины штанги.



 

Похожие патенты:

Изобретение относится к испытаниям транспортных средств и может быть использовано для испытания тележек аттракционов. .

Изобретение относится к конвейеростроению, а именно к стендам для исследования интенсивности износа бортов подвесной ленты конвейера. .

Изобретение относится к конвейеростроению, а именно к стендам для исследования параметров трубчатого ленточного конвейера. .

Изобретение относится к строительной отрасли промышленности и может быть использовано для испытания и исследования рабочих органов для бестраншейной замены трубопроводов.

Изобретение относится к стендовому оборудованию для проведения исследований работы капельниц различных конструкций, как встроенных в полости гибкого, поливного трубопровода, так и фиксируемых на его поверхности.

Изобретение относится к области технического обслуживания и эксплуатации сложных дорогостоящих объектов. .

Изобретение относится к насосостроению, в частности к диафрагменным насосам, и может быть использовано для перекачивания различных текучих сред. .

Изобретение относится к испытательной технике и может быть использовано для исследования надежности и измерения электрических и механических параметров электрооборудования автомобиля, в частности для испытания подрулевых переключателей автомобиля.

Изобретение относится к стендам для исследования параметров конвейера с подвесной лентой, а именно сопротивлений движению ленты по стационарным роликам. .

Изобретение относится к области измерительной и испытательной техники. .

Изобретение относится к испытательной технике и может быть использовано для испытания строительных конструкций

Изобретение относится к испытательной технике и может быть использовано для обезвешивания механизмов с гибкой конструкцией элементов при проведении наземных испытаний механизмов, рассчитанных на работу в невесомости

Изобретение относится к конвейеростроению, а именно к стендам для исследования параметров опорных элементов для ленты трубчатого ленточного конвейера

Изобретение относится к конвейеростроению, а именно к стендам для исследования деформации ленты ленточно-канатного конвейера с подвесными опорами

Изобретение относится к испытательной технике и может быть использовано для испытания грузоподъемных кранов

Изобретение относится к области автоматизированных систем мониторинга технического состояния зданий и сооружений и может быть использовано для определения опасного для эксплуатации состояния и предупреждения об опасности находящихся в них людей

Изобретение относится к испытательной технике и может быть использовано для создания стендов для измерения амплитудно-частотных характеристик устройств возбуждения виброколебаний

Изобретение относится к области механизации животноводства, в частности к устройствам для испытания молочных насосов

Изобретение относится к способам испытаний и конструкции стенда для исследования долговечности дорожных одежд с имитацией транспортных, климатических и гидрологических воздействий
Наверх