Сверхпроводник и способ его изготовления

Изобретение относится к области электротехники, в частности к способу изготовления сверхпроводника, согласно которому формируют сверхпроводящий слой на слое основы путем повторного выполнения пленочного осаждения, по меньшей мере, три раза, причем толщина сверхпроводящей пленки, формируемой при каждом пленочном осаждении, составляет 0,3 мкм или менее. В этом случае даже при увеличении толщины сверхпроводящего слоя уменьшение плотности критического тока JC подавляется и в результате этого критический ток IC может быть повышен. Техническим результатом изобретения является увеличение IC сверхпроводника. 2 н. и 1 з.п. ф-лы, 1 ил., 2 табл.

 

Область техники

Изобретение относится к сверхпроводнику и к способу его изготовления, а в частности к сверхпроводнику, имеющему толстый сверхпроводящий слой и большой критический ток (далее называемого «IC»), и к способу его изготовления.

Уровень техники

Для таких сверхпроводников, как сверхпроводящие провода, в целях увеличения критического тока IC изучалась возможность увеличения толщины сверхпроводящего слоя.

Однако, если сверхпроводящий слой формируют с большой толщиной путем осаждения за один раз, то в сверхпроводящий слой во время пленочного осаждения не может быть захвачено достаточное количество кислорода. В этом случае плотность критического тока (далее называемого «JC») уменьшается и, соответственно, критический ток IC не может быть увеличен. Помимо этого, если сверхпроводящий слой формируют с большой толщиной путем выполнения пленочного осаждения за один раз, то время, необходимое для одного процесса пленочного осаждения, удлиняется. В результате этого, элемент в слое основы, такой как Ni, диффундирует в сверхпроводящий слой, из-за чего возникает такая проблема, как его реакция со сверхпроводящим слоем.

Поэтому для формирования толстого сверхпроводящего слоя и для увеличения IC изучался способ многослойного осаждения, согласно которому пленочное осаждение выполняют, по меньшей мере, два раза, причем толщина сверхпроводящей пленки при каждом пленочном осаждении уменьшается (см., например, статью Какимото с соавторами (Kazutomi Kakimoto et al.), "Preparation of Y-system coated conductor with high IC using repeated deposition by PLD", Abstracts of the 67th Cryogenic Association of Japan (CSJ) Conference in 2002, p.228).

Согласно этой статье Какимото с соавторами толщину сверхпроводящей пленки регулировали на уровне 0,35 мкм при каждом пленочном осаждении и при этом осаждение проводили 4-6 раз. Даже когда толщина сверхпроводящего слоя (10 мм шириной) составляла 1 мкм или более, IC составлял всего примерно 130 А. В эксперименте, описываемом в упомянутой статье, скорость перемещения ленты основы с шириной 10 мм, на которой формировали сверхпроводящий слой, составляла 4 м/час.

Соответственно, желательно обеспечить дальнейшее увеличение IC сверхпроводников.

Раскрытие изобретения

Ввиду описываемой выше ситуации, цель настоящего изобретения заключается в обеспечении сверхпроводника, сформированного способом многослойного осаждения, в котором IC увеличен, причем с меньшим снижением JC даже в случае увеличения толщины сверхпроводящего слоя и в создании способа изготовления такого сверхпроводника.

Для достижения упомянутой выше цели способ изготовления сверхпроводника согласно настоящему изобретению включает в себя этап формирования сверхпроводящего слоя на слое основы путем выполнения пленочного осаждения, по меньшей мере, три раза, причем толщина сверхпроводящей пленки при каждом пленочном осаждении составляет 0,3 мкм или менее, и при этом на слое основы сформируют сверхпроводящую пленку с толщиной от 0,75 до 3 мкм. Помимо этого, в способе изготовления сверхпроводника согласно настоящему изобретению скорость подачи слоя основы при каждом пленочном осаждении может составлять, по меньшей мере, 0,04 м2/час.

Сверхпроводник согласно настоящему изобретению содержит слой основы и сверхпроводящий слой с толщиной от 0,75 до 3 мкм, причем сверхпроводящий слой формируют путем выполнения пленочного осаждения на слой основы, по меньшей мере, три раза, при этом толщина сверхпроводящей пленки при каждом пленочном осаждении составляет 0,3 мкм или менее.

Краткое описание чертежей

Фиг.1(а)-1(d) иллюстрируют способ изготовления сверхпроводника согласно настоящему изобретению.

Наилучшие варианты осуществления изобретения

Далее будут описаны варианты осуществления настоящего изобретения. Соотношения размеров на чертежах не всегда соответствуют тем, которые указаны в приводимом ниже описании.

Согласно способу изготовления сверхпроводника по настоящему изобретению, обращаясь к Фиг.1(а)-1(d), можно видеть, что сверхпроводящий слой 2 формируют на слое 1 основы путем выполнения пленочного осаждения, по меньшей мере, три раза с получением сверхпроводника 100, причем толщина сверхпроводящей пленки при каждом пленочном осаждении составляет 0,3 мкм или менее, и при этом на слое основы сформируют сверхпроводящую пленку с толщиной от 0,75 до 3 мкм.

Например, далее со ссылкой к Фиг.1(а)-(d) будет описан способ, согласно которому пленочное осаждение выполняют три раза. Сначала готовят слой 1 основы, показанный на Фиг.1(а). Как показано на Фиг.1(b), первое пленочное осаждение 21 выполняют на слой 1 основы таким образом, что толщина Т1 сверхпроводящей пленки, формируемой при первом пленочном осаждении, составляет 0,3 мкм или менее, с формированием сверхпроводящего слоя 2.

Затем, как показано на Фиг.1(с), второе пленочное осаждение 22 выполняют на сформированный упомянутым выше образом сверхпроводящий слой 2 так, что толщина Т2 сверхпроводящей пленки, формируемой при втором пленочном осаждении, составляет 0,3 мкм или менее, чтобы увеличить толщину Т сверхпроводящего слоя 2. На этом этапе толщина Т сверхпроводящего слоя 2 представлена формулой Т=Т12. Затем выполняют третье пленочное осаждение 23 на сформированный упомянутым выше образом сверхпроводящий слой 2 так, что толщина Т3 сверхпроводящей пленки, формируемой при третьем пленочном осаждении, составляет 0,3 мкм или менее, для дальнейшего увеличения толщины Т сверхпроводящего слоя 2. На этом этапе толщина Т сверхпроводящего слоя 2 представлена формулой Т=Т123.

Таким образом пленочное осаждение последовательно повторяют для увеличения толщины сверхпроводящего слоя. После выполнения пленочного осаждения n раз толщина Т сверхпроводящего слоя в общем виде может быть представлена как Т=Т12+...+Тn, где n представляет собой целое число три или более.

При втором и последующем пленочном осаждении, когда осаждают сверхпроводящую пленку, имеющую тот же химический состав, что и при первом пленочном осаждении, разницы между сверхпроводящими пленками при каждом пленочном осаждении нет. В этом случае формируется один сверхпроводящий слой даже после выполнения пленочного осаждения n раз.

В способе изготовления сверхпроводника согласно настоящему изобретению толщина сверхпроводящей пленки при каждом пленочном осаждении составляет 0,3 мкм или менее. Если толщина пленки превышает 0,3 мкм, то трудно заставить сверхпроводящий слой захватить в себя достаточное количество кислорода во время пленочного осаждения, и, соответственно, JC сверхпроводящего слоя уменьшается. В этом случае даже при увеличении толщины сверхпроводящего слоя все же трудно увеличить IC сверхпроводящего слоя.

Материал показанного на Фиг.1(а)-(d) сверхпроводящего слоя 2 никоим образом не ограничен. Предпочтительные примеры включают в себя такие оксидные сверхпроводящие материалы, как RE1Ba2Cu3O7-δ (где RE обозначает редкоземельный элемент, причем в последующем описании он обозначает то же самое). Способ формирования сверхпроводящего слоя 2, другими словами, способ осаждения сверхпроводящей пленки, никоим образом не ограничен, при условии, что пленочное осаждение может быть осуществлено в кислородной атмосфере. Примеры способов осаждения из паровой фазы включают в себя метод импульсного лазерного осаждения, метод электронно-лучевого осаждения и метод ионного напыления. Примеры жидкофазного способа предпочтительно включают в себя метод осаждения металлоорганических соединений (MOD, от англ. «metal organic deposition»), метод осаждения металлоорганических соединений трифторуксусной кислоты (TFA-MOD, от англ. «trifluoroacetic acid metal organic deposition») и метод жидкофазной эпитаксии (LPE, от английского «liquid phase epitaxy»).

Показанный на Фиг.1(а)-(d) слой 1 основы является слоем, на котором формируют сверхпроводящий слой. Слой 1 основы может состоять только из подложки или же он может состоять из подложки и расположенного на ней буферного слоя. В первом случае сверхпроводник 100 содержит подложку, которая представляет собой слой 1 основы, и сверхпроводящий слой 2. Во втором случае сверхпроводник 100 содержит подложку и буферный слой, которые образуют слой 1 основы, и сверхпроводящий слой 2. В слое 1 основы, по меньшей мере, слой, прилегающий к сверхпроводящему слою (далее называемый «прилегающим слоем 11 основы»), должен иметь двухосную ориентацию. Соответственно, если прилегающему слою 11 основы соответствует подложка, то эта подложка должна иметь двухосную ориентацию. Если в положении прилегающего слоя 11 основы находится буферный слой, то этот буферный слой должен иметь двухосную ориентацию, а подложка не обязательно должна иметь двухосную ориентацию. Здесь термин «двухосная ориентация» означает не только тот случай, когда прилегающий слой основы имеет совершенную двухосную ориентацию, но также и случай, когда угол расхождения оси кристалла в прилегающем слое основы составляет 25° или менее. Две оси в двухосной ориентации указывают ось кристалла, перпендикулярную поверхности прилегающего слоя основы, и ось кристалла, параллельную поверхности слоя основы. Угол расхождения оси кристалла в прилегающем слое основы означает угол расхождения оси кристалла, находящейся в плоскости, которая параллельна поверхности прилегающего слоя основы, и при этом значение угла расхождения оси кристалла в прилегающем слое основы представлено средним углом расхождения в прилегающем слое основы.

Хотя материал подложки никоим образом не ограничен, однако в качестве материала, который может обеспечить двухосную ориентацию, предпочтительно используют Ni, Cr, Mn, Co, Fe, Pd, Cu, Ag, Au или сплав, состоящий из, по меньшей мере, двух этих металлов. Эти металлы и сплавы могут быть использованы по отдельности, либо со слоями других металлов или сплавов.

Хотя материал буферного слоя никоим образом не ограничен, однако материалы, предпочтительным образом используемые в качестве материала, обеспечивающего двухосную ориентацию, являются оксидами металлов, содержащими, по меньшей мере, один металлический элемент и имеющими кристаллическую структуру типа пирохлора, типа флюорита, типа каменной соли или типа перовскита. В частности, примеры таких материалов включают в себя оксиды редкоземельных элементов, такие как СеО2, стабилизированный оксидом иттрия диоксид циркония (YSZ, от англ. «yttria stabilized zirconia»), BaZrO3 (BZO), SrTiO3 (STO), Al2O3, YAlO3, MgO и соединения Ln-M-O (где О обозначает кислород, Ln обозначает по меньшей мере один элемент ряда лантаноидов, а М обозначает по меньшей мере один элемент, выбранный из группы, состоящей из Sr, Zr и Ga). Эти оксиды снижают различие между текстурированной металлической подложкой и сверхпроводящим слоем с точки зрения параметров решетки и ориентации кристалла. Помимо этого, эти оксиды предотвращают диффундирование атомов металла из текстурированной металлической подложки в сверхпроводящий слой. В качестве буферного слоя можно сформировать два или большее количество слоев.

Если используется двухосно-ориентированная подложка, из которой диффундирует меньшее число атомов, например, двухосно-ориентированная подложка из Ag, то сверхпроводящий слой может быть сформирован непосредственно на двухосно-ориентированной подложке из Ag без формирования буферного слоя.

В способе изготовления сверхпроводника согласно настоящему изобретению, обеспечена возможность формирования сверхпроводящего слоя с толщиной от 0,75 до 3 мкм путем выполнения пленочного осаждения, по меньшей мере, три раза на слой основы. Если толщина сверхпроводящего слоя составляет менее 0,75 мкм, то JC является большим, но IC не увеличивается из-за небольшой толщины слоя. Если толщина сверхпроводящего слоя превышает 3,0 мкм, то JC уменьшается с увеличением числа раз выполнения пленочного осаждения. В результате, даже когда толщина слоя увеличивается, IC не увеличивается. С этой точки зрения толщина сверхпроводящего слоя предпочтительно составляет от 0,9 до 3,0 мкм.

В способе изготовления сверхпроводника согласно настоящему изобретению подаваемая за час площадь слоя основы (далее называемая «скоростью подачи слоя основы») при каждом пленочном осаждении может составлять, по меньшей мере, 0,04 м2/час. Если скорость подачи слоя основы составляет менее 0,04 м2/час, когда прилегающему слою основы соответствует подложка, то в некоторых случаях усиливается реакция между подложкой и сформированным на ней сверхпроводящим слоем, в результате чего ухудшаются характеристики сверхпроводящего слоя, такие как IC и JC.

Обращаясь к Фиг.1(d), сверхпроводник согласно настоящему изобретению представляет собой сверхпроводник 100, в котором сверхпроводящий слой 2 толщиной от 0,75 до 3,0 мкм сформирован на слое 1 основы за счет выполнения пленочного осаждения, по меньшей мере, три раза, причем толщина сверхпроводящей пленки при каждом пленочном осаждении составляет 0,3 мкм или менее. Если толщина сверхпроводящего слоя составляет менее 0,75 мкм, то JC является большим, но IC не увеличивается по причине небольшой толщины слоя. Если толщина сверхпроводящего слоя превышает 3,0 мкм, то JC уменьшается по мере увеличения числа раз выполнения пленочного осаждения. В результате, даже когда толщина слоя увеличивается, IC не увеличивается. С этой точки зрения предпочтительная толщина сверхпроводящего слоя составляет от 0,9 до 3,0 мкм.

Сверхпроводники и способы их изготовления согласно настоящему изобретению будут более подробно описаны ниже со ссылкой на примеры.

Примеры 2-10 и Ссылочный пример 1

Ссылаясь на Фиг.1(а)-1(d), ленту из никелевого сплава (т.е. сплава на основе никеля), содержащую двухосно-ориентированную подложку из никелевого (Ni-го) сплава (10 мм шириной и 0,1 мм толщиной) и выполненный на ней двухосно-ориентированный буферный слой YSZ (толщиной 0,1 мм), использовали в качестве слоя 1 основы, показанного на Фиг.1(а) (двухосно-ориентированный буферный слой YSZ соответствовал прилегающему слою 11 основы). Как показано на Фиг.1(b), сверхпроводящий слой 2, состоящий из Но1Ва2Cu3O7-δ и имеющий толщину 0,25 мкм, формировали импульсным лазерным осаждением на двухосно-ориентированном буферном слое YSZ, который был прилегающим слоем 11 слоя 1 основы. Это осаждение выполняли таким образом: мишень, состоящую из Но1Ва2Cu3O7-δ,облучали эксимерным лазером на основе KrF при плотности энергии 3 Дж/см2 в атмосфере газообразного кислорода, имевшей давление газа 26,6 Па (200 мТорр), в которую слой 1 основы подавали со скоростью подачи 0,05 м2/час. Затем, как показано на Фиг.1(с) и последующей фигуре, второе и последующее пленочное осаждение выполняли для увеличения толщины сверхпроводящего слоя 2 в тех же условиях, в которых выполнялось пленочное осаждение согласно вышеизложенному.

Таким образом, были приготовлены следующие 10 (десять) сверхпроводников:

сверхпроводник (Ссылочный пример 1), содержащий сверхпроводящий слой толщиной 0,5 мкм, приготовленный путем выполнения пленочного осаждения два раза;

сверхпроводник (пример 2), содержащий сверхпроводящий слой толщиной 0,75 мкм, приготовленный путем выполнения пленочного осаждения три раза;

сверхпроводник (пример 3), содержащий сверхпроводящий слой толщиной 1,0 мкм, приготовленный путем выполнения пленочного осаждения четыре раза;

сверхпроводник (пример 4), содержащий сверхпроводящий слой толщиной 1,25 мкм, приготовленный путем выполнения пленочного осаждения пять раз;

сверхпроводник (пример 5), содержащий сверхпроводящий слой толщиной 1,5 мкм, приготовленный путем выполнения пленочного осаждения шесть раз;

сверхпроводник (пример 6), содержащий сверхпроводящий слой толщиной 1,75 мкм, приготовленный путем выполнения пленочного осаждения семь раз;

сверхпроводник (пример 7), содержащий сверхпроводящий слой толщиной 2,0 мкм, приготовленный путем выполнения пленочного осаждения восемь раз;

сверхпроводник (пример 8), содержащий сверхпроводящий слой толщиной 2,5 мкм, приготовленный путем выполнения пленочного осаждения десять раз;

сверхпроводник (пример 9), содержащий сверхпроводящий слой толщиной 3,0 мкм, приготовленный путем выполнения пленочного осаждения двенадцать раз; и

сверхпроводник (пример 10), содержащий сверхпроводящий слой толщиной 3,5 мкм, приготовленный путем выполнения пленочного осаждения четырнадцать раз.

IC сверхпроводников в примерах 2-10 и Ссылочном примере 1 был измерен четырехэлектродным методом для вычисления JC. Таблица I дает сводные результаты для JC и IC.

Сравнительные примеры 1-7

Сверхпроводники со сверхпроводящим слоем большой толщины были приготовлены путем выполнения пленочного осаждения один раз с использованием того же слоя основы, что и в Ссылочном примере 1, и при тех же условиях пленочного осаждения, как в Ссылочном примере 1, за исключением скорости подачи слоя основы. Уменьшение скорости подачи слоя основы могло увеличить толщину сверхпроводящего слоя. Таким образом были приготовлены следующие сверхпроводники:

сверхпроводник (Сравнительный пример 1), содержащий сверхпроводящий слой толщиной 0,25 мкм;

сверхпроводник (Сравнительный пример 2), содержащий сверхпроводящий слой толщиной 0,5 мкм;

сверхпроводник (Сравнительный пример 3), содержащий сверхпроводящий слой толщиной 0,75 мкм;

сверхпроводник (Сравнительный пример 4), содержащий сверхпроводящий слой толщиной 1,0 мкм;

сверхпроводник (Сравнительный пример 5), содержащий сверхпроводящий слой толщиной 1,25 мкм;

сверхпроводник (Сравнительный пример 6), содержащий сверхпроводящий слой толщиной 1,5 мкм; и

сверхпроводник (Сравнительный пример 7), содержащий сверхпроводящий слой толщиной 1,75 мкм;

Были измерены JC и IC. Результаты измерений приводятся в Таблице I.

Таблица I

Сравн. пример 1Ссылочный пример 1Пример 2Пример 3Пример 4Пример 5Пример 6Пример 7Пример 8Пример 9Пример 10
Толщина слоя (мкм)0,250,50,751,01,251,51,752,02,53,03,5
Число пленочных осаждений 12345678101214
JC (МА/см2)2,52,42,42,22,12,01,71,51,31,00,4
IC (А/см ширины)62,5120180220262,5300297,5300325300140
Сравн. пример 1Сравн. пример 2Сравн. пример 3Сравн. пример 4Сравн. пример 5Сравн. пример 6Сравн. пример 7
Толщина слоя (мкм)0,250,50,751,01,251,51,75
Число пленочных осаждений111111
JC (МА/см2)2,52,01,41,10,60,10
IC (А/см ширины62,510010511075150

В этих примерах пленочное осаждение выполняли, по меньшей мере, два раза, и при этом толщина сверхпроводящей пленки, нанесенной при каждом пленочном осаждении, составляла 0,25 мкм. При использовании этого способа подавляется уменьшение JC сверхпроводящего слоя, сопровождаемое увеличением толщины сверхпроводящего слоя. Следовательно, увеличение толщины сверхпроводящего слоя могло увеличить IC. IC сверхпроводников оказалось возможным увеличить до примерно 300 А/см ширины в пяти примерах (примеры 5-9), т.е. начиная со сверхпроводника (пример 5), содержащего сверхпроводящий слой толщиной 1,5 мкм, приготовленный путем выполнения пленочного осаждения шесть раз, до сверхпроводника (пример 9), содержащего сверхпроводящий слой толщиной 3,0 мкм, приготовленный путем выполнения пленочного осаждения двенадцать раз.

Напротив, в Сравнительных примерах JC сверхпроводящего слоя очень сильно уменьшалась с увеличением толщины сверхпроводящего слоя. Когда толщина сверхпроводящего слоя составила от 0,5 до 1,0 мкм (Сравнительные примеры 2-4), IC не увеличивался более примерно 100 А/см ширины. Даже когда толщина сверхпроводящего слоя была увеличена еще, IC уменьшился.

Ниже приводится сравнение сверхпроводников с одинаковой толщиной слоя между примерами и Сравнительными примерами. В сверхпроводнике (Ссылочный пример 1), содержащем сверхпроводящий слой толщиной 0,5 мкм, приготовленный путем выполнения пленочного осаждения два раза, IC составлял 120 А/см ширины. В сверхпроводнике (Сравнительный пример 2), содержащем сверхпроводящий слой толщиной 0,5 мкм, приготовленный путем выполнения пленочного осаждения один раз, IC составлял 100 А/см ширины. То есть IC в Ссылочном примере 1 превышал IC в Сравнительном примере 2 на 20 А/см ширины. С другой стороны, в сверхпроводнике (пример 2), содержащем сверхпроводящий слой толщиной 0,75 мкм, приготовленный путем выполнения пленочного осаждения три раза, IC составил 180 А/см ширины. В сверхпроводнике (Сравнительный пример 3), содержащем сверхпроводящий слой толщиной 0,75 мкм, приготовленный путем выполнения пленочного осаждения один раз, IC составлял 105 А/см ширины. То есть IC в примере 2 превышал IC в Сравнительном примере 3 не менее чем на 75 А/см ширины. Соответственно, IC может быть значительно увеличен в том случае, когда сверхпроводящий слой толщиной, по меньшей мере, 0,75 мкм формируют путем выполнения пленочного осаждения, по меньшей мере, три раза, с толщиной пленки при каждом пленочном осаждении сверхпроводящей пленки 0,3 мкм или менее.

В случае, когда сверхпроводящий слой осаждали один раз, как это показано в Сравнительном примере 7, где толщина сверхпроводящего слоя составила 1,75 мкм, как JC, так и IC становятся нулевыми. Напротив, если сверхпроводящий слой осаждали, по меньшей мере, два раза, то IC увеличивался по возрастания числа пленочных осаждений. Таким образом, в сверхпроводнике (пример 5), содержащем сверхпроводящий слой толщиной 1,5 мкм, приготовленный путем выполнения пленочного осаждения шесть раз, IC увеличился до 300 А/см ширины, и при этом IC оставался на уровне примерно 300 А/см ширины в последующих примерах, в которых число пленочных осаждений увеличивалось, вплоть до случая сверхпроводящего слоя толщиной 3,0 мкм, приготовленного путем выполнения пленочного осаждения двенадцать раз (пример 9). Однако, если толщина сверхпроводящего слоя превышала 3,0 мкм, то JC резко уменьшался, в результате чего уменьшался IC.

Примеры 11-14 и Сравнительные примеры 8-10

Сверхпроводники были приготовлены также, как и в Ссылочном примере 1, за следующим исключением: толщина сверхпроводящей пленки при каждом пленочном осаждении изменялась путем регулирования скорости подачи слоя основы, а само пленочное осаждение выполняли три раза в тех случаях, когда сверхпроводящий слой был сформирован путем выполнения пленочного осаждения два или более раза, то есть толщину сверхпроводящей пленки при каждом пленочном осаждении регулировали на уровне 0,1 мкм (пример 11), 0,2 мкм (пример 12), 0,25 мкм (пример 13), 0,3 мкм (пример 14), 0,35 мкм (Сравнительный пример 8), 0,4 мкм (Сравнительный пример 9) или 0,5 мкм (Сравнительный пример 10).

Таблица II
Пример 11Пример 12Пример 13Пример 14Сравнительный пример 8Сравнительный пример 9Сравнительный пример 10
Скорость подачи слоя основы

2/час)
0,1250,06250,05000,04170,03570,03130,0250
Толщина пленки при каждом пленочном осаждении (мкм)0,10,20,250,30,350,40,5
Толщина слоя (три пленочных осаждения) (мкм)0,30,60,750,91,051,21,5
JC (МА/см2)2,62,52,42,21,60,80,4
IC (А/см ширины)781501801981689660

Как следует из Таблицы II, когда толщина сверхпроводящей пленки при каждом пленочном осаждении увеличивается с 0,3 мкм (пример 14) до 0,35 мкм (Сравнительный пример 8), JC резко уменьшается с 2,2 до 1,6 МА/см2, в результате чего IC уменьшается с 198 до 168 А/см ширины, даже когда толщина сверхпроводящего слоя увеличилась с 0,9 до 1,05 мкм.

Следует понимать, что раскрытые здесь варианты осуществления и примеры во всех отношениях являются пояснительными и не ограничивающими. Объем настоящего изобретения определяется прилагаемой формулой, а не предшествующим ей описанием. Предполагается, что все эквиваленты формулы и все модификации в рамках формулы включены в объем настоящего изобретения.

Промышленная применимость

Как указано выше, согласно настоящему изобретению сверхпроводящий слой формируют путем выполнения пленочного осаждения, по меньшей мере, три раза, и при этом толщина пленки при каждом пленочном осаждении составляет 0,3 мкм или менее. Следовательно, даже когда толщина сверхпроводящего слоя увеличивается, уменьшение JC может быть подавлено, а IC может быть повышен. Настоящее изобретение может широко применяться для увеличения IC сверхпроводников.

1. Способ изготовления сверхпроводника, включающий в себя этап формирования сверхпроводящего слоя на слое основы путем выполнения пленочного осаждении, по меньшей мере, три раза, причем толщина сверхпроводящей пленки, наносимой при каждом пленочном осаждении, составляет 0,3 мкм или менее, и при этом на слое основы формируют сверхпроводящую пленку с толщиной от 0,75 до 3 мкм.

2. Способ изготовления сверхпроводника по п.1, в котором скорость подачи слоя основы при каждом пленочном осаждении составляет, по меньшей мере, 0,04 м2/ч.

3. Сверхпроводник, содержащий сверхпроводящий слой, сформированный путем выполнения пленочного осаждения на слой основы, по меньшей мере, три раза, при этом сверхпроводящий слой имеет толщину в диапазоне от 0,75 до 3,0 мкм, причем толщина сверхпроводящей пленки, нанесенной при каждом пленочном осаждении, составляет 0,3 мкм или менее.



 

Похожие патенты:

Изобретение относится к способу изготовления сверхпроводящего провода, в частности к способу изготовления сверхпроводящего провода с высокими и однородными рабочими характеристиками.

Изобретение относится к одной из отраслей электротехнической промышленности - кабельной технике, более конкретно - к миниатюрным электрическим кабелям управления для проводной линии связи (ПЛС) малогабаритных управляемых ракет с командной системой управления и способу его изготовления.

Изобретение относится к одной из отраслей электротехнической промышленности - кабельной технике, более конкретно к миниатюрным электрическим кабелям управления для проводной линии связи (ПЛС) малогабаритных ракет с командной системой управления и способ его изготовления.

Изобретение относится к области электротехники, в частности к сверхпроводящему устройству, которое имеет оксидный сверхпроводящий провод. .

Изобретение относится к электротехнике, в частности к кабельному производству

Изобретение относится к области электротехники, в частности к сверхпроводящему тонкопленочному материалу, сверхпроводящему проводу и способу их изготовления

Изобретение относится к пенистой композиции для использования в кабелях и кабелю, содержащему пенистую композицию для использования в телекоммуникациях

Изобретение относится к электротехнике и энергетике, в частности к герметичным вводам электрических проводников, и может быть использовано для ввода проводников в герметичные помещения или объемы на атомных электростанциях, или других объектах

Изобретение относится к электротехнике и энергетике, в частности к герметичным вводам электрических проводников, и может быть использовано для ввода проводников в герметичные помещения или объемы на атомных электростанциях или других объектах

Изобретение относится к области электротехники и касается выполнения системы проектирования сверхпроводящего кабеля постоянного тока

Изобретение относится к области электротехники, в частности к способу изготовления сверхпроводящего провода и к сверхпроводящему устройству с таким проводом
Наверх