Способ изготовления герметичного никель-кадмиевого аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано при производстве герметичных никель-кадмиевых аккумуляторов. Способ изготовления герметичного никель-кадмиевого аккумулятора включает сборку пакета электродных пластин с разделением положительных и отрицательных электродов сепарационным материалом, осадку блока в аккумуляторный корпус, заливку аккумулятора электролитом, проведение формировочных зарядно-разрядных циклов. В каждом формировочном цикле заряд проводят до напряжения 1,56-1,58 В, а разряд до напряжения 1 В. При этом формирование аккумулятора проводят шестью зарядно-разрядными циклами. Во время каждого формировочного цикла доливают электролит, поддерживая его постоянный уровень и концентрацию. Техническим результатом является значительное сокращение времени формирования аккумулятора, а также повышение емкости аккумулятора и увеличение срока его службы. 2 з.п. ф-лы, 2 табл.

 

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при производстве герметичных никель-кадмиевых аккумуляторов.

Известен способ формирования герметичного щелочного аккумулятора (А.С. №1304685, Кл. Н01М 10/28, 1995 г.) путем проведения заряд-разрядных циклов в объеме электролита, равном 17-19 свободным объемам аккумулятора. В таком объеме электролита количество карбонатов остается в пределах нормы (до 10 г/л), что позволяет использовать его повторно.

Недостатком известного способа является длительность формировочного цикла (время заряда - 18 ч, время разряда - 9 ч). Кроме того, этот способ формирования не обеспечивает необходимую для длительного срока службы емкость аккумулятора.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ изготовления герметичного никель-кадмиевого аккумулятора большой энергоемкости (патент RU №2128870, Кл. Н01М 10/34, Н01М 10/26, 1999 г.), включающий сборку пакета электродных пластин с разделением положительных и отрицательных электродов сепарационным материалом, осадку блока в аккумуляторный корпус, заливку аккумулятора электролитом и проведение формировочных зарядно-разрядных циклов. После установки просепарированного блока электродов в корпус его заливают водным раствором едкого лития с концентрацией 50-110 г/л, пропитывают в вакууме и заряжают, после чего сливают раствор едкого лития, заливают водным раствором едкого кали с концентрацией 300-350 г/л с добавкой едкого лития 15-35 г/л и проводят зарядно-разрядные циклы. Этот способ позволяет снизить потери емкости при герметизации.

Недостатком известного способа является длительный процесс формирования (более 60 часов). Также этот способ не обеспечивает необходимую емкость при больших сроках работы аккумулятора.

Целью изобретения является значительное сокращение времени формирования аккумулятора, а также повышение емкости аккумулятора и увеличение срока его службы.

Решение поставленной задачи достигается тем, что в способе изготовления герметичного никель-кадмиевого аккумулятора включающем сборку пакета электродных пластин с разделением положительных и отрицательных электродов сепарационным материалом, осадку блока в аккумуляторный корпус, заливку аккумулятора электролитом, проведение формировочных зарядно-разрядных циклов, в каждом формировочном цикле заряд проводят до напряжения 1,56-1,58 В, а разряд до напряжения 1 В. Кроме того, формирование аккумулятора проводят шестью зарядно-разрядными циклами. Во время каждого формировочного цикла доливают электролит, поддерживая его постоянный уровень и концентрацию.

Заявленный способ изготовления герметичного никель-кадмиевого аккумулятора, обеспечивающий повышение емкости аккумулятора и увеличение срока службы, а также значительно сокращающий время формирования аккумулятора реализуется так, как описано в примере.

Пример. Производят формирование аккумулятора типа НКГК-90СА. Никель-кадмиевый аккумулятор, состоящий из блоков оксидно-никелевых и оксидно-кадмиевых пластин, отделенных друг от друга сепараторами и помещенных в металлический корпус, заливают электролитом - водным раствором едкого кали с концентрацией 300 г/л с добавкой водного раствора едкого лития с концентрацией 30 г/л. Пропитку электродного блока производят под вакуумом, после чего аккумулятор формируют шестью зарядно-разрядными циклами с сообщением при заряде около 150% номинальной емкости. Сила тока заряда и разряда - 18 А. Процесс формирования ведется без пауз в одном электролите. В процессе проведения циклов производят измерение напряжения при заряде и разряде. Время завершения заряда определяется достижением значения напряжения 1,56 В, время завершения разряда определяется достижением значения напряжения 1 В. Продолжительность заряда и разряда в циклах представлена в таблице 1.

Таблица 1.
Способ формирования аккумулятора НКГК-90СА.
№ циклаРежимВремяНапряжение при окончании, А·ч
1заряд1 ч1,56
разряд20 мин1
2заряд2 ч1,56
разряд50 мин1
3заряд4 ч1,56
разряд2 ч1
4заряд5 ч1,56
разряд3,5 ч1
5заряд6 ч1,56
разряд5 ч1
6заряд7 ч1,56
разряд6,5 ч1

Доливку электролита в процессе формирования производят при переключении с заряда на разряд и обратно, поддерживая его уровень выше кромок сепаратора. После формирования в аккумулятор доливают калийно-литиевый электролит с доведением его количества до 0,45 мл на 1 см3 электродного блока (включая сепарационный материал), вводят угольный электрод, герметизируют аккумулятор и испытывают на отдачу емкости в герметичном виде.

Продолжительность процесса формирования аккумулятора, изготовленного заявленным способом, составляет 43 ч 10 мин, в то время как формирование такого же аккумулятора способом, изложенным в прототипе, занимает гораздо большее время (заряд-разрядные циклы длятся 60 ч без учета времени на смену электролита).

Для проведения испытаний было изготовлено по заявляемой технологии 4 аккумулятора НКГК-90СА. Наработка данных аккумуляторов составила 2 календарных года в режиме неглубокого цитирования, общее количество циклов - более 14000, остаточная контрольная емкость 63 А·ч. Характеристики аккумуляторов в процессе ресурсных испытаний приведены в таблице 2 для сравнения с характеристиками блока 800А, состоящего из 4 таких же никель-кадмиевых аккумуляторов, но выполненных по технологии, принятой за прототип.

Таблица 2.
Сравнительные характеристики модуля 4НКГК-90СА и блока 800А.
Время наработки (мес)Количество цикловКонтрольная емкость (А·ч)
модуль 4НКГК-90САблок 800Амодуль 4НКГК-90САблок 800А
62400240085,7582
128400480075,4575,5
1810600720074,264,5
22,51370090007360
2414300-63-

Как видно из приведенных в таблице 2 данных, проведенные испытания показали, что изготовление аккумулятора по заявляемому способу приводит к существенному улучшению емкостных характеристик и срока его службы. Так через 22,5 месяца наработки блок 800А перестает работать при остаточной емкости 60 А·ч, отработав всего 9000 циклов. В то же время модуль 4НКГК-90СА обладает емкостью 73 А·ч после проведения гораздо большего числа циклов, что позволило ему продолжить работу в течение 24 полных месяцев.

Таким образом, заявленная технология обеспечивает повышение емкости никель-кадмиевого герметичного аккумулятора и увеличение срока его службы, а также значительно сокращает время формирования аккумулятора.

Также следует отметить, что предлагаемый режим формирования легко автоматизировать с применением программного реле времени.

1. Способ изготовления герметичного никель-кадмиевого аккумулятора, включающий сборку пакета электродных пластин с разделением положительных и отрицательных электродов сепарационным материалом, осадку блока в аккумуляторный корпус, заливку аккумулятора электролитом, проведение формировочных зарядно-разрядных циклов, отличающийся тем, что в каждом формировочном цикле заряд проводят до напряжения 1,56÷1,58 В, а разряд до напряжения 1 В.

2. Способ по п.1, отличающийся тем, что формирование аккумулятора проводят шестью зарядно-разрядными циклами.

3. Способ по п.1, отличающийся тем, что во время каждого формировочного цикла доливают электролит, поддерживая его постоянный уровень и концентрацию.



 

Похожие патенты:
Изобретение относится к электротехнической промышленности и может быть использовано при производстве герметичных никель-кадмиевых аккумуляторов с тканевой сепарацией.

Изобретение относится к электротехнике и может быть использовано в авиационных стартерных аккумуляторных батареях с щелочным электролитом, применяемых в качестве бортового резервного источника тока летательных аппаратов.
Изобретение относится к электротехнической промышленности и может быть использовано в производстве щелочных аккумуляторов с безламельными электродами. .

Изобретение относится к электротехнической промышленности и может быть использовано в производстве никель-кадмиевых герметичных аккумуляторов с безламельными электродами.
Изобретение относится к области получения композиционных материалов, в частности к получению пористых гибких диэлектрических материалов для сепараторов химических источников тока.
Изобретение относится к электротехнической промышленности и может быть использовано в производстве щелочных аккумуляторов с безламельными электродами. .
Изобретение относится к химическим источникам тока и может быть использовано в электротехнике при изготовлении никель-железных аккумуляторов. .

Изобретение относится к электротехнике и может быть использовано в производстве и эксплуатации аккумуляторов. .
Изобретение относится к электротехнике и может быть использовано в производстве и эксплуатации аккумуляторов. .

Изобретение относится к электротехнике и может быть использовано в щелочных аккумуляторах, включающих положительный электрод из сферического гидроксида никеля и отрицательный электрод из оксида цинка, разделенные комбинированным пористым сепаратором, щелочной электролит и корпус с клапаном

Изобретение относится к способам производства никелевой волоконной электродной основы с развитой поверхностью волокон для химических источников тока и полученной этим способом никелевой волоконной основе электрода
Изобретение относится к электротехнике и может быть использовано для изготовления электродов химических источников тока, например для щелочных и кислотных аккумуляторов. Согласно изобретению углеродный войлок, обладающий электронной проводимостью, гальванически металлизируют в каком-либо стандартном электролите переменным асимметричным током при соотношении амплитуд катодного и анодного импульсов тока γ и соотношении длительностей катодного и анодного импульсов τ, определяемых индивидуально для каждого типа электролита и углеродного войлока с помощью двухфакторного эксперимента в интервалах γ=1,1÷5 и τ=0,1÷0,9 соответственно, среднее значение переменного асимметричного тока выбирают в соответствии с требованиями используемого электролита, частота переменного асимметричного тока может быть любая в интервале от 1 Гц до 100 кГц. Техническим результатом изобретения является: упрощение технологического процесса изготовления пористых электродов, сокращение расхода необходимых материалов за счет устранения нестабильных стадий активации и химической металлизации войлочной основы, повышение качества изготовленных электродов, создание различных профилей металлизации по глубине пористых электродов.

Изобретение относится к устройству для сборки и оснащения корпусов автомобильных аккумуляторных батарей (АБ) как компактной системы, содержащей отдельные технологические станции и связанные с ними транспортные устройства, причем пакеты аккумуляторных пластин, подлежащие технологической обработке, размещаются в зажимных блоках и подаются в устройство с необходимой шириной пакета для намеченных элементов АБ, подаваемых станцией подачи, установленной перед предлагаемым устройством. Создание компактного сборочного устройства корпусов АБ, оснащенных двойным рядом элементов АБ, которое сочетает в себе все необходимые стадии для указанной сборки, а также обеспечивает определение и контроль массы собранных единиц АБ, является техническим результатом заявленного изобретения. 11 з.п. ф-лы, 9 ил., 2 пр.

Заявленное изобретение относится к области электротехники, а именно к способу изготовления никель-цинковых аккумуляторов с металлокерамическим окисно-никелевым электродом. Предложенный способ изготовления окисно-никелевого электрода для никель-цинкового аккумулятора включает пропитку готового электрода в растворе, содержащем, в г/л: сульфат кобальта 50-75, сульфат кадмия 50-75 г/л, в течение 0,5-1,0 часа, последующую обработку в растворе калиевой щелочи концентрацией 200-300 г/л в течение 0,5-1,0 часа и окончательное формирование электрода в растворе калиевой щелочи концентрацией 1-3 моль/л при зарядной и разрядной плотности тока 2-10 мА/см2. Техническим результатом заявленного изобретения является повышение емкости никель-цинковых аккумуляторов с окисно-никелевым и цинковым электродами на коротких режимах разряда. 1 ил., 1 пр.

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного и литий-полимерного аккумулятора. Техническим результатом изобретения является повышение удельной разрядной емкости, уменьшение экологического риска и снижение взрывобезопасности. Согласно изобретению для изготовления активной массы электродов в качестве связующего используют гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или сополимера стирола и акрилата. Смешение компонентов проводят одновременно с ультразвуковым диспергированием. При следующих соотношениях компонентов смеси, % (масс. сух. в-ва): активный материал 76-96; ацетиленовый технический углерод 0,1-12, гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или стирол-акрилата 4-12, а сушку электродов ведут до остаточной влажности 0,001%. В качестве электропроводной добавки и связующего используют гель-полимерные или твердо-полимерные электролиты переменного состава. В качестве пластификатора гель-полимерного электролита используют: пропиленкарбонат, диметилкарабонат, диэтилкарбонат и их смеси с этиленкарбонатом, в качестве ионогенной соли лития: LiPF6, LiClO4, LiBF4, LiAsF6, в качестве материала отрицательного электрода: природные или синтетические графиты, в качестве материала отрицательного электрода: LiFePO4, LiCoO2, LiNiO2. 2 табл., 5 пр.

Изобретение относится к области изготовления химических источников тока, а именно к аккумуляторной батарее, включающей слоистый элемент, и к способу сборки слоистого элемента. Предотвращение электрического короткого замыкания, улучшение степени охлаждения и повышение надежности сборки слоистого элемента является техническим результатом изобретения. Слоистый элемент включает в себя внешний кожух, положительный электрод, отрицательный электрод, сепаратор, расположенный между положительным электродом и отрицательным электродом, и электропроводящий токоотвод, проходящий через положительный электрод, отрицательный электрод и сепаратор в осевом направлении внешнего кожуха. Положительный электрод, отрицательный электрод и сепаратор уложены стопкой в осевом направлении внешнего кожуха. Первый электрод, который представляет собой один из положительного и отрицательного электродов, находится в контакте с внутренней поверхностью внешнего кожуха, но не находится в контакте с токоотводом. Второй электрод, который представляет собой другой электрод, не находится в контакте с внешним кожухом, но находится в контакте с токоотводом. Внешняя кромка второго электрода накрыта сепаратором. Периферийная кромка отверстия, через которое проходит токоотвод, в первом электроде накрыта сепаратором. 4 н. и 11 з.п. ф-лы, 1 табл., 12 ил.

Изобретение относится к электроэнергетике, в частности к обратимым топливным элементам. Технический результат - обеспечение создания обратимого топливного элемента и батареи обратимых топливных элементов, каждый из которых имеет превосходные характеристики эффективности использования энергии, плотности энергии и изменения нагрузки по заданному графику. Обратимый топливный элемент включает положительный электрод, содержащий диоксид марганца, отрицательный электрод, содержащий материал-накопитель водорода; сепаратор, расположенный между положительным и отрицательным электродами, и электролит. Каждый из отрицательных и положительных электродов представляет собой электрод для выработки электроэнергии, а также электрод, который производит электролиз электролита с использованием электрического тока, подаваемого извне. Этот элемент способен накапливать электрическую энергию, подающуюся во время перезарядки, путем преобразования этой электрической энергии в газ, а также способен к обратному преобразованию газа в электрическую энергию в целях использования этой электрической энергии. 4 н. и 15 з.п. ф-лы, 17 ил.
Наверх