Способ изготовления основы электрода химического источника тока из углеродного войлока с использованием переменного асимметричного тока


 


Владельцы патента RU 2510548:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)

Изобретение относится к электротехнике и может быть использовано для изготовления электродов химических источников тока, например для щелочных и кислотных аккумуляторов. Согласно изобретению углеродный войлок, обладающий электронной проводимостью, гальванически металлизируют в каком-либо стандартном электролите переменным асимметричным током при соотношении амплитуд катодного и анодного импульсов тока γ и соотношении длительностей катодного и анодного импульсов τ, определяемых индивидуально для каждого типа электролита и углеродного войлока с помощью двухфакторного эксперимента в интервалах γ=1,1÷5 и τ=0,1÷0,9 соответственно, среднее значение переменного асимметричного тока выбирают в соответствии с требованиями используемого электролита, частота переменного асимметричного тока может быть любая в интервале от 1 Гц до 100 кГц. Техническим результатом изобретения является: упрощение технологического процесса изготовления пористых электродов, сокращение расхода необходимых материалов за счет устранения нестабильных стадий активации и химической металлизации войлочной основы, повышение качества изготовленных электродов, создание различных профилей металлизации по глубине пористых электродов.

 

Изобретение относится к электротехнике и может быть использовано для изготовления электродов химических источников тока, например для щелочных и кислотных аккумуляторов.

Известен способ изготовления электродов химических источников тока [Заявка ФРГ N 4004106, кл. H01M 4/75, 1991.], который состоит в активации нетканого полотна из полимерных, например полиолефиновых, волокон в растворе, содержащем олово и палладий; химическом никелировании полотна и гальваническом никелировании.

Недостатком способа является использование больших количеств олова и применение дорогостоящего палладия. Расход палладия в случае металлизации волокнистых материалов оказывается особенно большим из-за развитой металлизируемой поверхности. Кроме того, при металлизации подготовленного таким образом полимерного волокнистого материала высока вероятность разложения раствора металлизации на случайно попавших в раствор с поверхности полимера частицах палладия.

В качестве прототипа выбран способ [патент РФ №№2054758 МПК H01M 4/80, H01M 10/28, 1996.] изготовления основы электрода химического источника тока. Согласно изобретению, основу из нетканого волокнистого полимерного материала с обменной емкостью по катионам 0,5-6 мг-экв/г активируют насыщением ионами никеля с последующей обработкой водным раствором борогидрида щелочного металла при концентрации 0,1-1,2 г/л при температуре 15-70°C в течение 0,5-30 мин, после чего проводят химическую и гальваническую металлизацию. Недостатком изобретения является то, что он требует нескольких подготовительных стадий перед химической и гальванической металлизацией. Причем качество каждой стадии сильно зависит от свойств нетканого волокнистого полимерного материала, в частности от его обменной емкости по катионам, что приводит разбросу в качестве уже готовых металлизированных электродов.

Задачей изобретения является создание способа изготовления металлизированных электродов для химических источников тока без дополнительной неустойчивой стадии активизации.

Поставленная задача решалась благодаря тому, что в известном способе гальванической металлизации поверхности волокнистого материала, полимерный волокнистый материал был заменен на углеродный войлок, обладающий электронной проводимостью, а гальваническая металлизация велась переменным асимметричным током при соотношении амплитуд катодного и анодного импульсов токов у и соотношении длительностей катодного и анодного импульсов т определяемых индивидуально для каждого типа электролита и углеродного войлока с помощью двухфакторного эксперимента в интервалах γ=1,1÷5 и τ=0,1÷0,9 соответственно, при этом среднее значение переменного асимметричного тока выбиралось в соответствии с требованиями используемого электролита, а частота переменного асимметричного тока выбиралась любая в интервале от 1 Гц до 100 кГц.

Если металлизировать углеродный войлок с использованием постоянного тока, то в основном металлизируются поверхностные слои войлочного электрода, а в глубине электрода войлок почти не металлизируется. Это связано с тем, что ток металлизации войлока экспоненциально убывает в глубь пористого электрода [Галушкин Н.Е., Кудрявцев Ю.Д. Исследование глубины проникновения электрохимического процесса в пористых электродах // Электрохимия. - 1994. - Т.30, N3. - С.382-387]. Причем после металлизации поверхностных слоев войлочного электрода их проводимость становится много выше не металлизированного войлока внутри электрода, что еще более способствует дальнейшему оседанию металла именно на поверхности.

Как показали исследования [Кукоз Ф.И, Кудрявцев Ю.Д., Галушкин Н.Е. Распределение количества прошедшего электричества в пористом электроде при поляризации переменным асимметричным током // Электрохимия. - 1989. - Т.35, - N7. - С.759-765] использование переменного асимметричного тока позволяет получать любое распределение количества прошедшего электричества по глубине пористых электродов, в том числе и равномерное. В этом случае углеродный войлок будет равномерно металлизироваться по всей его глубине. Частота асимметричного переменного тока не имеет большого значения в интервале от 1 герца до 100 килогерц [Галушкин Н.Е., Кудрявцев Ю.Д. Влияние частоты внешнего тока на распределение количества прошедшего электричества по глубине пористого электрода // Электрохимия. - 1993. - Т.29, N10. - С.1192-1195].

Сущность предложенного способа заключается в следующем. Согласно исследованиям [Кукоз Ф.И, Кудрявцев Ю.Д., Галушкин Н.Е. Распределение количества прошедшего электричества в пористом электроде при поляризации переменным асимметричным током // Электрохимия. - 1989. - Т.35, -N7. - С.759-765] распределение тока по глубине пористого электрода зависит от соотношения амплитуд катодного и анодного импульсов тока γ (причем γ>1) и соотношения длительностей катодного и анодного импульсов тока τ, которые в свою очередь зависят от типа электродов из толщины, пористости и т.д. Поэтому оптимальные значения γ, τ, дающие равномерное распределение тока заряда по глубине пористых электродов, имеют разные значения для различных типов углеродных войлочных электродов и могут быть найдены только экспериментально.

Ниже приведен пример осуществления предлагаемого способа.

Для изготовления металлизированной основы, например оксидно-никелевого электрода никель кадмиевого аккумулятора, был использован углеродный войлок марки НТМ-200М ТУ 3497-010-04668002-2004 с толщиной полотна 3 мм. Металлизация производилась гальванически в стандартной ванне Уотса до содержания никеля 0,5 г/см3. Параметры асимметричного переменного тока: плотность катодных импульса тока 17,5 А·дм-2, плотность анодных импульсов тока 20 А·дм-2, длительность катодных импульсов 20 мс, длительность анодных импульсов 10 мс В результате получается металлическая войлочная матрица с равномерным покрытием по всей глубине пористого электрода с толщиной покрытия 4 мкм.

Используемый способ изготовления основы электрода химического источника тока с использованием переменного асимметричного тока по сравнению с существующими способами имеет следующие преимущества:

1. Не использует нестабильные стадии активации и химической металлизации войлочной основы, что упрощает технологический процесс изготовления пористых электродов, сокращает расход необходимых материалов и повышает качество изготовленных электродов.

2. Позволяет создавать металлические пористые электроды с любым распределением металла по глубине пористого электрода.

Источники

1. Заявка ФРГ N 4004106, кл. H01M 4/75, 1991.

2. Патент РФ №№2054758 МПК H01M 4/80, H01M 10/28

3. Галушкин Н.Е., Кудрявцев Ю.Д. Исследование глубины проникновения электрохимического процесса в пористых электродах // Электрохимия. - 1994. - Т.30, N3. - С.382-387

4. Кукоз Ф.И, Кудрявцев Ю.Д., Галушкин Н.Е. Распределение количества прошедшего электричества в пористом электроде при поляризации переменным асимметричным током // Электрохимия. - 1989. -T.35, - N7. - C.759-765

5. Галушкин Н.Е., Кудрявцев Ю.Д. Влияние частоты внешнего тока на распределение количества прошедшего электричества по глубине пористого электрода // Электрохимия. - 1993. - Т.29, N10. - С.1192-1195

Способ изготовления основы электрода химического источника тока с использованием переменного асимметричного тока, заключающийся в гальванической металлизации поверхности волокнистого материала, отличающийся тем, что в качестве волокнистого материала берут углеродный войлок, обладающий электронной проводимостью, а гальваническую металлизацию ведут переменным асимметричным током при соотношении амплитуд катодного и анодного импульсов токов γ и соотношении длительностей катодного и анодного импульсов τ, определяемых индивидуально для каждого типа электролита и углеродного войлока с помощью двухфакторного эксперимента, в интервалах γ=1,1÷5 и τ=0,1÷0,9 соответственно, при этом среднее значение переменного асимметричного тока выбирают в соответствии с требованиями используемого электролита, а частоту переменного асимметричного тока выбирают любую в интервале от 1 Гц до 100 кГц.



 

Похожие патенты:

Изобретение относится к способам производства никелевой волоконной электродной основы с развитой поверхностью волокон для химических источников тока и полученной этим способом никелевой волоконной основе электрода.

Изобретение относится к электроду для электрохимического устройства. .

Изобретение относится к перезаряжаемому, предпочтительно неводному элементу аккумуляторной батареи. .
Изобретение относится к порошковой металлургии, в частности к изготовлению порошковых материалов для электродов химических источников тока. .
Изобретение относится к электротехнической промышленности и может быть использовано в производстве щелочных аккумуляторов с безламельными электродами. .

Изобретение относится к прикладной электрохимии, а конкретно к технологии получения объемной пористой металлической пены, которая может быть применена для изготовления электродов химических источников тока, а также в процессах изготовления фильтров или носителей для катализаторов.

Изобретение относится к способам производства никелевой волоконной электродной основы с развитой поверхностью волокон для химических источников тока и полученной этим способом никелевой волоконной основе электрода.

Изобретение относится к электротехнике и может быть использовано в щелочных аккумуляторах, включающих положительный электрод из сферического гидроксида никеля и отрицательный электрод из оксида цинка, разделенные комбинированным пористым сепаратором, щелочной электролит и корпус с клапаном.
Изобретение относится к электротехнической промышленности и может быть использовано при производстве герметичных никель-кадмиевых аккумуляторов. .
Изобретение относится к электротехнической промышленности и может быть использовано при производстве герметичных никель-кадмиевых аккумуляторов с тканевой сепарацией.

Изобретение относится к электротехнике и может быть использовано в авиационных стартерных аккумуляторных батареях с щелочным электролитом, применяемых в качестве бортового резервного источника тока летательных аппаратов.
Изобретение относится к электротехнической промышленности и может быть использовано в производстве щелочных аккумуляторов с безламельными электродами. .

Изобретение относится к электротехнической промышленности и может быть использовано в производстве никель-кадмиевых герметичных аккумуляторов с безламельными электродами.
Изобретение относится к области получения композиционных материалов, в частности к получению пористых гибких диэлектрических материалов для сепараторов химических источников тока.
Изобретение относится к электротехнической промышленности и может быть использовано в производстве щелочных аккумуляторов с безламельными электродами. .

Изобретение относится к устройству для сборки и оснащения корпусов автомобильных аккумуляторных батарей (АБ) как компактной системы, содержащей отдельные технологические станции и связанные с ними транспортные устройства, причем пакеты аккумуляторных пластин, подлежащие технологической обработке, размещаются в зажимных блоках и подаются в устройство с необходимой шириной пакета для намеченных элементов АБ, подаваемых станцией подачи, установленной перед предлагаемым устройством. Создание компактного сборочного устройства корпусов АБ, оснащенных двойным рядом элементов АБ, которое сочетает в себе все необходимые стадии для указанной сборки, а также обеспечивает определение и контроль массы собранных единиц АБ, является техническим результатом заявленного изобретения. 11 з.п. ф-лы, 9 ил., 2 пр.
Наверх