Способ измерения температуры

Изобретение относится к измерительной технике и предназначено для многоканального измерения температуры, может быть использовано в пищевой, химической и других отраслях промышленности. Способ многоканального измерения температуры, с последующим вводом полученных данных в IBM совместимый компьютер, основанный на применении преобразователя напряжения в частоту, представлен схемой преобразования термо ЭДС термопар, состоящей из блоков: блока коммутации аналоговых сигналов, блока усиления аналогового сигнала, блока АЦП, блока управления, блока сопряжения с шиной компьютера, блока опорных напряжений. Технический результат заявленного изобретения заключается в повышении точности получаемых результатов, а также многоканальном преобразовании термо ЭДС термопар с последующим вводом полученных данных в компьютер. 1 ил.

 

Изобретение относится к измерительной технике и предназначено для многоканального измерения температуры, и может быть использовано в пищевой, химической и других отраслях промышленности.

Известен способ измерения температуры [1], основанный на применении преобразователя напряжения в частоту с использованием в качестве преобразователя температуры диода VD2, что обеспечивает измерение температуры от 0 до 100°С с разрешающей способностью ±0,1°С; при этом погрешность измерений не превышает ±0,3°С во всем диапазоне [см. Алексенко А.Г. Применение прецизионных аналоговых микросхем. - М: Радио и связь, 1985 г., с 147, рис 3.10].

Недостатком данного способа измерения температуры является малый диапазон измерения температуры, недостаточная стабильность преобразования.

Известен способ [2] одноканального измерения температуры, основанный на применении преобразователя напряжения в частоту, реализованного на интегральном таймере с использованием в качестве таймера интегрального таймера 1006ВИ1 с частотой выходных импульсов от 0 до 10 кГц. /см. Алексенко А.Г. Применение прецизионных аналоговых микросхем. - М: Радио и связь, 1985 г., с 146, рис 3.9/.

Недостатком данного способа измерения температуры является невысокая стабильность, одноканальность.

Технический результат заявленного изобретения заключается в повышении точности получаемых результатов, а также многоканальном преобразовании термо ЭДС термопар с последующим вводом полученных данных в компьютер.

Технический результат достигается тем, что в процессе преобразования напряжения термопар в частоту выполняют следующую последовательность действий: обеспечивают возможность приема сигнала от термопар по многим каналам при помощи аналогового коммутатора К590КН6, усиливают и нормализуют сигнал при помощи операционного усилителя К140УД8, формируют цифровую последовательность при помощи аналого-цифрового преобразователя (АЦП) и подают сигнал на шину ISA компьютера для дальнейшей обработки при помощи параллельного - периферийного адаптера 580ВВ55, при этом дополнительно формируют сигналы выбора канала передачи сигнала в аналоговом коммутаторе К590КН6 и сигналы управления АЦП при помощи блока управления, а также формируют стабильные опорные напряжения в АЦП и аналоговом коммутаторе К590КН6 при помощи блока опорных напряжений.

Применение данного сочетания микросхем, компьютерная программная обработка результатов позволяют существенно повысить точность измерений и компенсировать все виды нестабильности (температурная нестабильность, нестабильность напряжений питания и временная, т.е. влияние эффекта старения радиоэлементов).

На чертеже изображена схема многоканального измерения температуры.

Схема многоканального измерения температуры состоит из следующих основных элементов: блок коммутации аналоговых сигналов (1), блок усиления аналогового сигнала (2), блок АЦП (3), блок управления (4), блок сопряжения с шиной компьютера (5), блок опорных напряжений (6).

Схема многоканального измерения температуры осуществляется следующим образом.

Сигналы с термопар поступают на входы блока коммутации (1), далее сигнал выбранного канала поступает на вход блока усиления (2). Затем усиленный и нормализованный сигнал с выхода блока усиления аналогового сигнала (2) поступает на вход АЦП (3). Цифровая последовательность с выхода АЦП (3) через блок сопряжения (5) выдается на шину ISA компьютера для дальнейшей обработки. Также через блок сопряжения (5) с шины компьютера передаются на блок управления (4) сигналы выбора канала и сигналы управления АЦП (3). Блок опорных напряжений (6) обеспечивает АЦП (3) и блок коммутации (1) необходимыми стабильными опорными напряжениями

Интенсификация процесса измерения достигается за счет многоканальности и быстродействия (время измерения по каждому каналу до 20 мс).

Предлагаемый способ многоканального измерения температуры позволяет получать большие массивы информации для последующей статистической обработки с использованием современных математических пакетов обработки данных (Mathcad, Mathlab и. т.д.) и может быть использован при создании промышленных измерительных приборов.

Источники информации

1 Алексенко А.Г. Применение прецизионных аналоговых микросхем - М: Радио и связь,1985 г., с 147, рис 3.10.

2 Алексенко А.Г. Применение прецизионных аналоговых микросхем - М: Радио и связь, 1985 г., с 146, рис 3.9.

Способ измерения температуры, заключающийся в преобразовании напряжения термопар в частоту, отличающийся тем, чтов процессе преобразования напряжения термопар в частоту выполняют следующую последовательность действий: обеспечивают возможность приема сигнала от термопар по многим каналам при помощи аналогового коммутатора К590КН6, усиливают и нормализуют сигнал при помощи операционного усилителя К140УД8, формируют цифровую последовательность при помощи аналого-цифрового преобразователя (АЦП) и подают сигнал на шину ISA компьютера для дальнейшей обработки при помощи параллельного периферийного адаптера 580ВВ55, при этом дополнительно формируют сигналы выбора канала передачи сигнала в аналоговом коммутаторе К590КН6 и сигналы управления АЦП при помощи блока управления, а также формируют стабильные опорные напряжения в АЦП и аналоговом коммутаторе К590КН6 при помощи блока опорных напряжений.



 

Похожие патенты:

Изобретение относится к области измерения температуры (к контактной термометрии). .

Изобретение относится к области измерения температуры (к контактной термометрии). .

Изобретение относится к области метрологии и может быть использовано в химической и других отраслях промышленности для измерения расхода веществ, находящихся как в жидкой, так и в газовой фазах, для контроля процессов мембранного разделения.

Изобретение относится к области исследования гидрофизических параметров морской воды и может быть использовано в составе специализированных комплексов или систем, устанавливаемых на подвижных носителях, для измерения гидрофизических параметров морской воды, таких как удельная электрическая проводимость, температура, давление, а также косвенных измерений таких параметров, как соленость морской воды, скорость распространения звука в морской воде, плотность морской воды и т.д.

Изобретение относится к области температурных измерений контактными термоприемниками и может быть использовано для контроля самых разных процессов, протекающих как в рамках решения медицинских и бытовых проблем человека, так и в ходе его производственной деятельности.

Изобретение относится к измерительной технике, в частности к устройствам термостатирования контрольных спаев дифференциальных термопар. .

Изобретение относится к энергетическому комплексу и, в частности, к производству устройств для измерения температуры в атомной энергетике. .

Изобретение относится к термометрии и может быть использовано при измерении температуры на оборудовании, применяемом в длительных технологических циклах. .

Изобретение относится к электроизмерительной технике и предназначено для скоростной имитации дискретного сигнала термометрических генераторных датчиков (например, термопар) при автоматизации метрологических исследований быстродействующих измерительных приборов и систем в электротермометрии.

Изобретение относится к измерению высоких температур в химических реакторах

Изобретение относится к измерительной технике и предназначено для автоматического управления прецизионным нуль-термостатом

Изобретение относится к измерительной технике и применяется для термостатирования опорных спаев дифференциальных термопар

Изобретение относится к сварочному производству, а именно к способам измерения температуры в зоне сварки при выполнении исследовательских или промышленных работ, связанных со сваркой изделий, при которых контролируется распределение температур вблизи свариваемых торцов и температура используется как параметр управления нагревом при сварке и последующей термообработке швов

Изобретение относится к области измерения температуры с использованием термопар

Изобретение относится к обработке металлов резанием и может быть использовано при измерении температуры на контактных участках режущего инструмента в процессе обработки заготовок различных марок сталей и сплавов
Наверх