Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени



Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
Способ и устройство акустического мониторинга свойств пены и аэрированных жидкостей в реальном времени
G01N29 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2344286:

Шлюмберже Текнолоджи Б.В. (NL)

Изобретение относится к способу и устройству акустического мониторинга свойств пены и аэрированных многофазных жидкостей со сложной реологией в реальном времени. Способ и устройство акустического мониторинга качества пены в реальном времени могут быть использованы для оценки доли газа в жидкостях, содержащих газ, в частности, в нефтедобывающей промышленности при обслуживании скважин, включая цементирование скважин или гидравлический разрыв пласта. Для акустического мониторинга качества пены в непосредственной близости от потока пены размещают по меньшей мере одну пару излучатель-приемник и излучают по меньшей мере один акустический импульс. Регистрируют время, за которое акустический импульс пройдет от излучателя к приемнику, и определяют скорость акустического импульса (скорость звука) путем анализа акустического отклика приемника. Затем определяют давление в пене в области между излучателем и приемником и рассчитывают качество Г пены согласно уравнению: где Cfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения, причем N=1 для изотермического процесса, N=1,4 для адиабатического процесса в случае пены, составленной из идеального газа и идеальной жидкости, для случаев, когда качество пены существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+» соответственно, а в случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные, в более сложных случаях его находят из таблицы значений. Технический результат - повышение эффективности акустического мониторинга качества пены в реальном времени. 3 н. и 7 з.п. ф-лы, 11 ил.

 

Область техники

Настоящее изобретение относится к способу и устройству акустического мониторинга свойств пены и аэрированных многофазных жидкостей со сложной реологией в реальном времени.

Изобретение может быть использовано для определения в реальном времени качества пены и аэрированных жидкостей, т.е. оценки доли газа в жидкостях, содержащих газ, в частности, в нефтедобывающей промышленности при обслуживании скважин, включая цементирование скважин или гидравлический разрыв пласта. Изобретение может быть использовано в любой области промышленности, например, в пищевой промышленности, при производстве газированных напитков, а также в фармацевтической промышленности.

Предшествующий уровень техники

Определение: отношение объема газа, содержащегося в жидкости, ко всему объему жидкости и газа называется качеством и обозначается буквой Г.

где V1 - объем газа, V - полный объем жидкости и газа.

По определению, Г находится в пределах от 0 до 1. Если Г≤0,5, жидкость называется аэрированной жидкостью, если Г>0,5, жидкость называется пеной. В данном описании для обоих случаев будет использоваться термин «пена».

Например, качество пены 0,9 означает, что пена состоит на 90% из газа и на 10% из жидкости.

Цементирование скважин необходимо для обеспечения долговременной стабильности скважин при воздействии пластового давления. Цементирование выполняют путем закачивания цементного раствора в скважину через колонну труб, после чего выжидают некоторое время, пока раствор затвердеет. В некоторых случаях целесообразно добавлять некоторое количество газа в закачиваемый раствор для его вспенивания и получения более легкого цементного раствора, при этом необходимо правильно определять качество «Г» закачиваемого вспененного цементного раствора. Правильное определение качества вспененного цементного раствора является важной составляющей при выполнении работ, поскольку является важным фактором, определяющим механические свойства цемента и, таким образом, стабильность скважин.

Гидравлический разрыв пласта осуществляется для повышения продуктивности скважины путем формирования или расширения каналов, соединяющих ствол скважины с нефтеносным пластом. Эта операция выполняется путем закачивания жидкости для гидравлического разрыва в скважину, проходящую через подземные пласты породы, и нагнетания жидкости для гидравлического разрыва в подземные пласты породы под давлением. Пласты породы или скальные породы растрескиваются, при этом образуется или расширяется один или несколько разрывов. Жидкость для гидравлического разрыва содержит расклинивающий наполнитель (проппант), который занимает объем разрыва и препятствует закрытию разрыва. Таким образом обеспечивается повышение потока добываемой нефти, газа или воды. В некоторых случаях в качестве жидкости для гидравлического разрыва пласта используется пена или аэрированная жидкость для того, чтобы либо уменьшить давление в устье скважины, либо улучшить очистку разрыва от скважинных жидкостей. В этом случае также необходимо правильно определить качество «Г» пены, используемой для гидравлического разрыва пласта.

Определение качества пены в промышленности обычно выполняется путем непосредственного измерения объема газа и жидкости в пене, причем измерения выполняются различными способами и различными инструментами. Например, это можно реализовать путем создания специального отводного контура по пути движения пены, который содержит камеру для выделения газа из пены, и прямого измерения объема газа или измерения расхода каждой из фаз, составляющих пену, посредством расходомера.

В патенте US 6461414 раскрыта система для определения и при необходимости управления ценообразованием жидкости, поступающей из подземной формации и проходящей через по меньшей мере один газожидкостной сепаратор, который обеспечивает отвод газа из пластового флюида, поступающего из подземной формации. Система содержит датчик для измерения требуемого параметра потока газа, отделенного от пластового флюида, который является показателем пенообразования пластового флюида. Система содержит также процессор для обработки измеренных параметров и определения степени ценообразования пластового флюида.

Система дополнительно содержит газовый сепаратор, т.е. устройство для отделения части газа из газового потока для образования боковой фракции, при этом датчик обеспечивает измерение параметров потока боковой фракции. В качестве сепаратора может быть использован полый вал. В качестве датчика может быть использован денситометр, т.е. прибор для измерения плотности или оптической плотности флюида в потоке газа, либо датчик оптической плотности потока газа.

Для определения уровня ценообразования осуществляется взятие пробы газа из сепаратора высокого давления и либо измерение плотности образца, либо измерение количества нефти. Устанавливается соответствие плотности или оптической плотности с уровнем ценообразования, полученный сигнал передается в устройство управления. Для управления ценообразованием осуществляется регулирование подачи по меньшей мере одной добавки, предназначенной для пенообразования.

Недостатком указанной системы является то, что для определения качества пены в потоке необходимо осуществлять отвод части потока в обводной трубопровод для образования бокового потока. Система не позволяет определять качество пены непосредственно в трубопроводе, по которому протекает поток флюида из подземной формации. Использование сепаратора приводит к большим погрешностям при измерении качества пены.

В патенте США 5470749 раскрыт способ непрерывного измерения качества протекающего потока пара, который используется для инжектирования в скважины для улучшения добычи нефти, при давлении существенно выше атмосферного и комнатной температуре. Способ заключается в том, что

a) смешивают пар известного качества (отношение объема пара к объему пара и жидкости) с поверхностно-активным веществом не более 1 вес.% жидкой фазы пара для образования стабильной пены, имеющей качество, равное качеству пара,

b) пропускают стабильную пену через неэлектропроводную экранированную капиллярную трубку и измеряют падение напряжения между двумя электродами, расположенными поперек заданной длины трубки, и падение давления через ту же заданную длину трубки,

c) повторяют указанные шаги, используя пар различного качества,

d) строят диаграмму зависимости между отношением падения напряжения и падением давления для определения качества пены (отношение объема пара к объему пара и жидкости) для каждого образца пара,

e) удаляют последовательность образцов потока пара неизвестного качества и повторяют шаги а), b) для каждого образца для определения отношения падения напряжения и давления стабильной пены, сформированной из указанного пара, и измеряют температуру стабильной пены, сформированной из указанного пара, для определения объема фазы жидкость-вода и вода-пар потока, формирующего стабильную пену,

f) определяют качество каждого образца стабильной пены на шаге е) графически из взаимосвязи между качеством пены и соотношением падения напряжения и падения давления, вычерченного на шаге d), что равно качеству пара,

g) конвертируют качество пара (отношение объема пара к объему пены), полученного на шаге f) для каждого образца, к качеству пара (масса пара на массу пара и жидкости), используя специфический объем фазы пара жидкость-вода и вода-пар, определенные на шаге е).

Недостатком указанного способа является то, что для определения качества пара необходимо вначале его преобразовать в стабильную пену и осуществить отвод части потока в обводной трубопровод, из которого осуществляют отбор образцов.

В случае ответвления потока пены, например, при проведении операций гидравлического разрыва или цементирования способ не позволяет непосредственно определять распределение качества пены. В этом случае качество рассчитывают теоретически или путем численного моделирования, задавая при этом либо данные о качестве в доступных местах потока, например, в точке закачивания раствора, либо задавая диаграмму закачивания, либо и то, и другое. Такие измерения невозможно провести в промышленных условиях, когда необходимо проводить мониторинг удаленных недоступных участков, по которым осуществляется подвод пены.

Возможно также измерять качество пены не прямым путем, т.е. не путем измерения объемов газа и жидкости, образующих пену, а путем мониторинга физических характеристик пены.

В качестве ближайшего технического решения можно рассматривать способ определения качества пены путем мониторинга физических характеристик пены, которые зависят от качества пены. Одной из таких характеристик является скорость звука в пене. Указанная зависимость скорости звука от качества пены раскрыта, например, в публикации А.Б.Вуда «Учебник по акустике» (Лондон, 1941 г.). Простейшим примером является двухфазная пена, состоящая из идеального газа и невязкой жидкости. Для такой пены скорость звука связана с качеством пены согласно уравнению:

где Cfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, например, N=1 для изотермического процесса, N=1,4 для адиабатического процесса).

Зависимость скорости звука в водной пене при р=10 МПа представлена на Фиг.1. Следует отметить, что типичная скорость Cfm звука в пене во много раз меньше скорости Clq звука в базовой жидкости. Эта зависимость хорошо подтверждается экспериментально (см., например, К.Falk, J.-S.Gudmundsson «Многофазные импульсы давления для быстродействующих клапанов», SPE 56526 или B.S.Gardiner «Измерения предела текучести в водных пенах в сухом приближении», журнал Rheology, 42(6), Nov/Dec, 1998). В публикации С.В.Киффер «Скорость звука в смесях жидкость-газ, например, вода-воздух и вода-пар» (журнал Geophys. Res., том 82, В20, 1977 г., стр.2895-2904) приведен пример современного теоретического анализа, который также подтверждает применимость формулы (1) для определения качества пены.

Для многофазных многокомпонентных смесей жидкостей и газов зависимость скорости звука от отношения объемов фаз может быть либо измерена в лабораторных условиях (см., например, B.S.Gardiner «Измерения предела текучести в водных пенах в сухом приближении»), либо рассчитана теоретически (см., например, В.Herzhaft «Реология водных пен: обзор отдельных экспериментальных работ», RE. IFP, Vol.54 (1999), No.5, pp.587-596), в которой раскрыт способ определения сжимаемости смеси, которая является основной величиной, от которой зависит скорость звука в среде.

Таким образом, качество пены может быть установлено путем измерения давления и скорости звука в пене, при этом конкретный вид зависимости качества пены от давления и скорости звука может быть установлен либо аналитически, либо экспериментально, либо путем численного моделирования. В дальнейшем описании такую зависимость называют «таблицей значений».

Благодаря строгой зависимости скорости звука от качества пены появилась возможность определять качество пены по результатам объединенных измерений скорости звука и давления в пене. Эта возможность становится все более привлекательной, в частности, в связи с появлением новых технологий измерения давления в скважине в реальном времени, например, путем использования оптического волокна (см, например, J.Lovell и др. IPC, Хьюстон, США, «Регистрация при моделировании», Симпозиум Шлюмберже по нефтедобыче, 2004).

Зависимость скорости звука от качества пены используется в измерительных приборах. Известно устройство для измерения скорости звука в бинарной смеси газов для определения изменения концентрации одного из компонентов смеси (см., например, Тинж Дж.Т. и др. «Ультразвуковой газовый анализатор высокого разрешения для определения состава бинарных смесей», журнал Phys. E: Scientific Instrument, 19, 1986).

Известен также способ измерения расхода многофазной жидкости в морских скважинах (см., например, патент US 5741978 или Дж.С.Гандмандсон и др. «Способ определения расхода жидкости», «Измерение параметров смесей газ-жидкости при помощи импульсов давления», «Измерение параметров двухфазных потоков на основе распространения импульсов давления». В основу указанных способов положена указанная зависимость скорости звука от качества пены.

Однако известные способы и устройства не позволяют определять в реальном времени путем акустических измерений качество пены, которая используется, например, для цементирования скважин или для гидравлического разрыва пластов, а также в других отраслях промышленности.

Краткое изложение существа изобретения

Технической задачей настоящего изобретения является создание способа и устройства мониторинга качества пены, которые позволили бы в реальном времени осуществлять измерения скорости звука и давления пены и по результатам измерений определять качество пены в реальном времени.

Поставленная задача решена путем создания способа акустического мониторинга качества пены в реальном времени, который заключается в том, что

размещают по меньшей мере одну пару излучатель-приемник в непосредственной близости от потока пены,

излучают по меньшей мере один акустический импульс,

регистрируют время, за которое акустический импульс пройдет от излучателя к приемнику,

определяют скорость акустического импульса (скорость звука) путем анализа акустического отклика приемника,

определяют давление в пене в области между излучателем и приемником,

рассчитывают качество Г пены согласно уравнению:

где Сfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, N=1 для изотермического процесса, N=1,4 для адиабатического процесса), в случае пены, составленной из идеального газа и идеальной жидкости, или, в более сложных случаях, находят его из таблицы значений.

Стоит заметить, что существуют 2 значения качества, соответствующие одним и тем же значениям скорости звука и давления в пене, данный факт соответствует знаку «±» в формуле, при этом сумма этих двух значений равна 1. Поэтому для случаев, в которых качество пены предположительно существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+», соответственно. Эта деталь вносит лишь несущественную неопределенность в заявленный способ, поскольку обычно из существа производимых операций хорошо известна примерная доля газа в жидкости и поэтому понятно или и, таким образом, ясно, какой знак в формуле следует выбирать. В случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные.

Целесообразно, чтобы перемещали указанную по меньшей мере одну пару излучатель-приемник вдоль потока пены и осуществляли измерение скорости звука в нескольких точках вдоль потока пены для получения распределения качества пены вдоль по потоку.

Предпочтительно, чтобы устанавливали пару излучатель-приемник в устье скважины для излучения звука в начале потока пены и приема сигнала, отраженного от конца потока пены.

Полезно, чтобы для мониторинга непрерывного распределения качества пены непрерывно измеряли давление вдоль потока пены.

Поставленная задача решена также путем создания устройства акустического мониторинга качества пены в реальном времени, содержащего

по меньшей мере одну пару излучатель-приемник, размещенную в непосредственной близости от потока пены, и предназначенную для излучения по меньшей мере одного акустического импульса и приема акустического отклика,

регистратор, предназначенный для регистрации времени прохода акустического импульса от излучателя к приемнику,

датчик давления, установленный в области между излучателем и приемником,

блок обработки данных, связанный с по меньшей мере одним излучателем-приемником, регистратором и датчиком давления и предназначенный для расчета скорости звука по времени прихода акустического импульса и расчета качества Г пены по полученным данным согласно уравнению

где Cfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, N=1 для изотермического процесса, N=1,4 для адиабатического процесса), в случае пены, составленной из идеального газа и идеальной жидкости, при этом для случаев, в которых качество пены предположительно существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+», соответственно, а в случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные, или, в более сложных случаях, путем вычисления качества пены из таблицы значений,

блок сравнения, предназначенный для сравнения величины, определяющей качество пены, с таблицей значений, в более сложных случаях.

Целесообразно, чтобы указанная по меньшей мере одна пара излучатель-приемник была расположена с возможностью перемещения вдоль потока пены для измерения скорости звука в нескольких точках вдоль потока пены для получения распределения качества пены вдоль по потоку.

Полезно, чтобы по меньшей мере одна пара излучатель-приемник была расположена в непосредственной близости от устья скважины для излучения звука в начале потока пены и приема сигнала, отраженного от конца потока пены.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов его воплощения со ссылками на сопровождающие чертежи, на которых:

Фиг.1 изображает зависимость скорости звука в водной пене при р=10 МПа;

Фиг.2 изображает схему устройства акустического мониторинга качества пены в реальном времени согласно изобретению;

Фиг.3 изображает схему второго варианта выполнения устройства акустического мониторинга качества пены в реальном времени согласно изобретению;

Фиг.4-10 изображают диаграммы распределения качества и параметров давления и скорости звука, а также времени распространения звука от поверхности до точки z при различных условиях на поверхности согласно изобретению;

Фиг.11 изображает диаграмму распределения давления в вертикальной скважине, заполненной пеной согласно изобретению.

Описание предпочтительных вариантов воплощения изобретения

Устройство акустического мониторинга качества пены в реальном времени представлено на Фиг.2 и содержит по меньшей мере одну пару 1 излучатель-приемник, размещенную в непосредственной близости от потока 2 пены, и предназначенную для излучения по меньшей мере одного акустического импульса и приема акустического отклика.

Поток пены проходит по трубе 3, размещенной в скважине 4. Устройство содержит также регистратор 5, предназначенный для регистрации времени прохода акустического импульса от излучателя 6 к приемнику 7. Датчик 8 давления установлен в области между излучателем 6 и приемником 7.

Устройство содержит также блок 9 обработки данных, связанный с по меньшей мере одним излучателем-приемником 6, 7, регистратором 5 и датчиком 8 давления и предназначен для расчета скорости звука по времени прихода акустического импульса и расчета качества Г пены по полученным данным согласно уравнению (3) в случае пены, составленной из идеального газа и идеальной жидкости, или, в более сложных случаях, для его определения из таблицы значений.

Возможен вариант выполнения, когда указанная по меньшей мере одна пара 1 излучатель-приемник расположена с возможностью перемещения вдоль потока пены для измерения скорости звука в нескольких точках вдоль потока пены для получения распределения качества пены вдоль по потоку.

Возможен другой вариант, когда указанная по меньшей мере одна пара 1 (Фиг.3) излучатель-приемник расположена в непосредственной близости от устья 10 скважины 4 для излучения звука в начале 11 потока пены и приема сигнала, отраженного от конца 12 потока пены.

Возможен также вариант, когда указанная по меньшей мере одна пара 1 излучатель-приемник установлена с возможностью перемещения вдоль потока пены.

Способ акустического мониторинга качества пены в реальном времени осуществляется следующим образом.

Размещают по меньшей мере одну пару 1 (Фиг.2) излучатель-приемник в непосредственной близости от потока пены. Излучают по меньшей мере один акустический импульс. Регистрируют время, за которое акустический импульс пройдет от излучателя 6 к приемнику 7. Определяют скорость акустического импульса (скорость звука) путем анализа акустического отклика приемника 7. Скорость звука определяют путем деления расстояния между источником 6 и приемником 7 на время прохождения акустического импульса.

Определяют давление в пене в области между излучателем 6 и приемником 7. Рассчитывают качество Г пены согласно уравнению (3) в случае пены, составленной из идеального газа и идеальной жидкости, или, в более сложных случаях, находят его из таблицы значений.

Расчет скорости звука в пене в специальном случае двухфазной среды, состоящей из идеального газа и идеальной невязкой жидкости, осуществляется следующим образом. Следует отметить, что аналогично осуществляется расчет скорости звука в более сложных веществах, например, для многофазной пены в виде смеси неидеального газа и жидкости со сложной реологией.

Рассмотрим смесь жидкости и газа при заданном давлении р и температуре Т. Обозначим объем газа V1 и объем жидкости V2, тогда качество Г равно

Изменения состояния жидкости описывается уравнением

где λ=ρfluidc2;

ρfluid - плотность жидкости;

с - скорость жидкости.

Уравнение изменения состояния газа (в изотермическом случае) определяется уравнением

В статическом случае изменению давления Δр соответствует изменение полного объема Δ(V1+V2), равное

следовательно, аналог первого параметра Ламе для смеси равен

Таким образом, первый параметр Ламе для смеси зависит от давления. Обычно λ˜103 МПа, при р˜10 МПа, следовательно, λ>>р и член Гр-1 в знаменателе преобладает до тех пор, пока не будет Г<0,01, т.е. вплоть до пренебрежимо малой концентрации газа.

Это означает, что при расчете акустических волн в пене можно заменить параметр Ламе в жидкости на λmix или, с хорошей точностью,

где р - давление. Обычно λmix≈10 МПа, что много меньше, чем для обычных жидкостей.

В наших расчетах свойства жидкости характеризуются плотностью жидкости и скоростью. Последнее соотношение означает, что можно пользоваться "эквивалентной скоростью cmix" в соответствии с формулой

где ρmixfluid(1-Г), отсюда

Уравнение (11) неприменимо для Г=0, так как приближение не выполняется. Для типичного набора параметров p=10 МПа, pfluid=1000 кг/м3, Г=0,3, получим Cmix=218 м/с.

На Фиг.1 показано изменение скорости звука Cmix в зависимости от Г для случая, когда 0≤Г≤0,5, в то время как зависимость скорости звука Cmix для случая, когда 0,5≤Г≤1 получается из этой диаграммы по формуле с(Г)=с(1-Г).

Таким образом, по расчетам скорость звука в пене значительно меньше скорости в жидкости при давлениях, сравнимых с объемным модулем жидкости.

Из диаграммы зависимости Г от скорости звука (Фиг.1) следует, что лучшим случаем для определения Г является левая часть кривой при малых Г. Таким образом, область, где 0≤Г≤0,5 или 0,85≤Г≤1, менее чувствительна к ошибкам определения скорости звука (до 10 м/с), поскольку они не сильно влияют на значение Г.

Можно теоретически рассчитать распределение качества пены в скважине для простой пены, рассмотренной выше, и определить соответствующее распределение скорости звука и давления, которые на практике могут быть измерены и использованы для расчета качества пены.

Расчеты для более сложных пен раскрыты в П.Валко и др. «Реологические свойства пен на основе двуокиси углерода и азота».

Пусть L - длина скважины, наклоненной под углом ϕ к вертикали. Пусть ось координат z проходит вдоль скважины таким образом, чтобы точка z=0 соответствовала устью скважины, а значение z возрастало по направлению вниз. Рассмотрим процесс, когда пена заполняет скважину. С ростом z давление возрастает, качество пены Г(z) при этом понижается, что можно рассчитать следующим образом (при условии, что газ для аэрирования является идеальным).

Рассмотрим бесконечно тонкий горизонтальный слой в скважине с центром в точке z. Пузырьки газа в этом слое удовлетворяют уравнению состояния

где p(z) - давление в точке; p(z) - плотность газа; μ - молекулярный вес газа; T(z) - температура в точке; Z - константа, зависящая от вида газа; R - универсальная газовая постоянная.

Как правило, количество газа в тонком слое является функцией z, зависящей от темпа нагнетания пены. Предположим, что количество газа на единицу объема не зависит от z, тогда плотность газа и качество связаны соотношением

где r выражается через полную массу Mg нагнетаемого газа в виде

где d - диаметр трубы.

Объединяя два выражения, получаем уравнение состояния газа в терминах качества пены

В то же время p(z) равно гидравлическому напору

где g - ускорение свободного падения.

По определению качества пены ρfoamfluid(1-Г)+ρgasГ. Пренебрегая малой величиной, связанной с газом, получаем ρfoamfluid(1-Г).

Следовательно,

Из уравнений (15), (16) следует интегральное уравнение для распределения качества пены:

Предположим, что температура изменяется линейно с глубиной в соответствии с эмпирическим законом

Дифференцируя (18) по z, получаем:

где

Как правило, α<<q, что позволяет положить в расчетах α=0. Зависимость от α сохранена только для того, чтобы показать интегрируемость уравнения при произвольном значении α, что может быть использовано в случаях очень большого градиента температуры. Для произвольного а дифференциальное уравнение легко интегрируется в алгебраическом виде

которое нужно решать численно. Ниже примем, что α=0. Тогда решение упрощается и принимает вид

Это означает, что решение выражается через безразмерную глубину

где масштабный коэффициент 1 определяется граничными условиями при z=0. Типичный диапазон значений для 1 составляет 0,01-0,1.

На Фиг.4-10 представлены диаграммы распределения качества пены и соответствующих параметров давления и скорости звука при заданных давлении и плотности жидкости на поверхности, а также времени распространения звука от поверхности до точки z при различных значениях Г, 1 на поверхности.

На фиг.11 представлена диаграмма распределения давления в вертикальной скважине, заполненной пеной. Верхняя кривая рассчитана в предположении равномерного распределения качества пены, нижняя кривая построена с учетом зависимости давления в устье скважины от качества пены.

По поводу измерения скорости звука в пене следует обратить внимание на следующее.

Вышеуказанный процесс измерения скорости звука позволяет получать удовлетворительные результаты в случае неограниченной среды. Однако он требует доработки в случае рапространения волн в ограниченных средах, в частности, в трубах, что характерно как для гидравлического разрыва пласта, так при цементировании скважин. Это объясняется тем, что любой локальный источник генерирует не только чистые Р-волны в пене, но также и другие типы волн, например, Р- и S-волны в породе и их образы (головные Р- и S-волны) в трубе, а также трубную волну, скорость которой несколько меньше скорости Р-волны в пене. Трубная волна обладает дисперсией, поэтому начальный импульс размывается во время распространения. Поэтому необходимо провести специальную обработку сигнала для выделения Р-волны из записанного сигнала. Такая обработка может быть выполнена следующим образом.

Благодаря тому, что скорость звука в пене Cfoam во много раз меньше скоростей Р- и S-волн в породе, а скорость трубной волны также меньше, но немного, скорости звука в пене, прибытие Р-волны и трубной волны заметно отстает по времени от прибытия головных Р- и S-волн. Это отставание значительно больше, чем в случае неограниченной среды. Следовательно, можно отбросить зарегистрированные сигналы Р- и S-головных волн и учитывать только оставшиеся волны, из которых наиболее быстрая компонента соответствует Р-волне пены.

Следовательно, скорость звука в пене Cfoam может быть определена путем регистрации первого прибытия волны, которое происходит значительно позже, чем прибытие головных Р- и S-волн.

С другой стороны, в связи с тем, что на диаграмме зависимости скорости звука от качества пены (Фиг.1) показано, что имеют место очень крутые участки для малых и больших величин качества Г пены, оказывается, что значительные погрешности в Cfoam не сильно влияют на Г. Благодаря этому определение качества пены становится более надежным для малых и больших значений Г.

Возможен вариант, когда перемещают указанную по меньшей мере одну пару 1 излучатель-приемник вдоль потока пены и осуществляют измерение скорости звука в нескольких точках вдоль потока пены. Указанные данные используют для получения распределения качества пены вдоль по потоку.

Возможно также установить пару излучатель-приемник в устье скважины для излучения звука в начале потока пены и приема сигнала, отраженного от конца потока пены. Распределение качества пены рассчитывается по заранее установленной формуле, связывающей полное время прохождения сигнала от излучателя к приемнику с распределением скорости звука в пене. Пример такого анализа приведен выше.

Для мониторинга непрерывного распределения качества пены непрерывно измеряют давление вдоль потока пены, например, при помощи оптического волокна, что позволяет выполнять измерения качества пены быстрее, так как нет необходимости перемещать пару источник-приемник вдоль потока. После определения распределения качества пены вдоль по потоку или вдоль отдельного участка потока результаты могут быть сравнены с заданными, которые требуются для проведения определенного вида работ, указанных выше. По полученным результатам принимают решение о продолжении работы без изменений или об изменении состава пены. Эту процедуру возможно повторять несколько раз при проведении работ или осуществлять непрерывно в течение работы.

Промышленная применимость

Предложенные устройство и способ позволяют осуществлять мониторинг качества пены в реальном времени, особенно в труднодоступных местах, при цементировании скважин и осуществлении гидравлического разрыва пласта.

1. Способ акустического мониторинга качества пены в реальном времени, заключающийся в том, что

размещают по меньшей мере одну пару излучатель-приемник в непосредственной близости от потока пены,

излучают по меньшей мере один акустический импульс,

регистрируют время, за которое акустический импульс пройдет от излучателя к приемнику,

определяют скорость акустического импульса (скорость звука) путем анализа акустического отклика приемника,

определяют давление в пене в области между излучателем и приемником,

рассчитывают качество Г пены согласно уравнению:

где Cfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, N=1 для изотермического процесса, N=1,4 для адиабатического процесса) в случае пены, составленной из идеального газа и идеальной жидкости, для случаев, в которых качество пены предположительно существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+» соответственно, а в случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные, или, в более сложных случаях, находят его из таблицы значений, где под таблицей значений понимается зависимость качества пены от давления от скорости звука и давления в пене, которая выведена аналитически, либо установлена экспериментально или путем численного моделирования.

2. Способ по п.1, отличающийся тем, что перемещают указанную по меньшей мере одну пару излучатель-приемник вдоль потока пены и осуществляют измерение скорости звука в нескольких точках вдоль потока пены для получения распределения качества пены вдоль по потоку.

3. Способ по п.1, отличающийся тем, что для мониторинга непрерывного распределения качества пены измеряют давление вдоль по меньшей мере одного протяженного участка вдоль потока пены.

4. Устройство акустического мониторинга качества пены в реальном времени, содержащее

по меньшей мере одну пару излучатель-приемник, размещенную в непосредственной близости от потока пены и предназначенную для излучения по меньшей мере одного акустического импульса и приема акустического отклика,

регистратор, предназначенный для регистрации времени прохода акустического импульса от излучателя к приемнику,

датчик давления, установленный в области между излучателем и приемником,

блок обработки данных, связанный с по меньшей мере одним излучателем-приемником, регистратором и датчиком давления и предназначенный для расчета скорости звука по времени прихода акустического импульса и расчета качества Г пены по полученным данным согласно уравнению:

где Cfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, N=1 для изотермического процесса, N=1,4 для адиабатического процесса), в случае пены, составленной из идеального газа и идеальной жидкости, для случаев, в которых качество пены предположительно существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+» соответственно; в случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные,

блок сравнения, предназначенный для сравнения величины, определяющей качество пены, с таблицей значений - в более сложных случаях, где под таблицей значений понимается зависимость качества пены от давления от скорости звука и давления в пене, которая может быть либо выведена аналитически, либо установлена экспериментально или путем численного моделирования.

5. Устройство по п.4, отличающееся тем, что указанная по меньшей мере одна пара излучатель-приемник расположена с возможностью перемещения вдоль потока пены для измерения скорости звука в нескольких точках вдоль потока пены для получения распределения качества пены вдоль потока.

6. Устройство по п.4, отличающееся тем, что при акустическом мониторинге качества пены, используемой для цементирования или гидравлического разрыва пласта, по меньшей мере одна пара излучатель-приемник расположена в непосредственной близости от устья скважины для излучения звука в начале потока пены и приема сигнала, отраженного от конца потока пены.

7. Способ акустического мониторинга в реальном времени качества пены, используемой для цементирования или гидравлического разрыва пласта и подаваемой в скважину, заключающийся в том, что

размещают по меньшей мере одну пару излучатель-приемник в непосредственной близости от потока пены,

излучают по меньшей мере один акустический импульс,

регистрируют время, за которое акустический импульс пройдет от излучателя к приемнику,

определяют скорость акустического импульса (скорость звука) путем анализа акустического отклика приемника,

определяют давление в пене в области между излучателем и приемником, рассчитывают качество Г пены согласно уравнению:

где Сfm - скорость звука в пене, р - давление, ρfl - плотность жидкости, Г - качество пены, N - коэффициент политропного расширения (справочная величина, N=1 для изотермического процесса, N=1,4 для адиабатического процесса), в случае пены, составленной из идеального газа и идеальной жидкости, для случаев, в которых качество пены предположительно существенно меньше 1/2 или существенно больше 1/2, выбор знака в формуле должен быть «-» и «+» соответственно, а в случае, когда оба значения Г близки к 1/2, оба значения качества должны рассматриваться как возможные, или, в более сложных случаях, находят его из таблицы значений, где под таблицей значений понимается зависимость качества пены от давления от скорости звука и давления в пене, которая может быть либо выведена аналитически, либо установлена экспериментально или путем численного моделирования.

8. Способ по п.7, отличающийся тем, что устанавливают пару излучатель-приемник в устье скважины или в непосредственной близости от него для излучения звука в начале потока пены и приема сигнала, отраженного от конца потока пены.

9. Способ по п.7, отличающийся тем, что сравнивают величину, определяющую качество пены, с качеством пены, необходимым для проведения цементирования или гидравлического разрыва пласта, и поддерживают величину качества Г пены в заданных пределах.

10. Способ по п.9, отличающийся тем, что устанавливают пару излучатель-приемник в устье скважины или в непосредственной близости от него для излучения звука в начале потока пены и приема сигнала.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов проката и конструкций типа лент, полос, труб, сосудов, рельсов и др.

Изобретение относится к области акустики и может быть использовано для анализа физико-химических свойств жидких сред, в частности для определения скорости звука и анализа других физических характеристик (вязкости, частотной дисперсии этих параметров и др.).

Изобретение относится к области неразрушающего контроля качества продукции металлургической промышленности с применением электромагнитно-акустических преобразователей и может быть использовано при ультразвуковом контроле сварных труб с поперечными или косыми (спиральными) швами для обнаружения сварного шва.

Изобретение относится к области ультразвукового (УЗ) неразрушающего контроля изделий, в частности железнодорожных рельсов. .

Изобретение относится к области технической диагностики и неразрушающего контроля металлических конструкций широкого профиля с использованием метода акустической эмиссии.

Изобретение относится к приборостроению и может найти применение в ультразвуковых приборах различного назначения в качестве устройства возбуждения и приема ультразвуковых сигналов, в частности в ультразвуковых расходомерах жидкостей и газов.

Изобретение относится к ультразвуковому неразрушающему контролю и может быть использовано при создании автоматических систем контроля листовых материалов иммерсионным методом.

Изобретение относится к ультразвуковой дефектоскопии сварных соединений и может быть использовано в различных отраслях промышленности для определения качества продукции при контроле по ультразвуковым изображениям.

Изобретение относится к технике неразрушающего контроля токопроводящих объектов, преимущественно ультразвуковым методом. .

Изобретение относится к области геофизики, в частности геофизическим методам исследования скважин, предназначено для обнаружения газонасыщенных пластов и может быть использовано при контроле за разработкой месторождений углеводородов.

Изобретение относится к области геофизических исследований, может быть использовано в телеметрических системах для крепления электронного модуля и позволяет увеличить срок службы нижнего переводника и центратора, а также повысить достоверность результатов измерений за счет изменения конструкции центратора и пробки защитного кожуха.

Изобретение относится к нефтедобыче, а именно к устройствам для измерения количества нефти и нефтяного газа, извлекаемых из недр, и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин (как отдельных, так и кустов) и лицензионных участков в системах герметизированного сбора.

Изобретение относится к определению геометрии стволов скважин внутри обсаженных скважин с помощью межскважинных электромагнитных измерений. .
Изобретение относится к технологии бурения нефтяных и газовых скважин, в частности к способам предупреждения и предотвращения осложнений и аварий в процессе бурения.

Изобретение относится к нефтепромысловой технологии, в частности к способу многоциклового гидродинамического исследования пласта в различных режимах, а также к промыслово-геофизическим исследованиям в режиме депрессии.

Изобретение относится к автоматическому управлению системой, которая защищает скважинное оборудование и оборудование, расположенное на поверхности, от высоких температур, являющихся результатом прорыва нагнетаемого пара.

Изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти из вертикальных, наклонно-направленных и горизонтальных скважин, эксплуатируемых с помощью установок электроцентробежных насосов.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для освоения и испытания скважин с низкими пластовыми давлениями. .

Изобретение относится к области навигационной техники, а именно к гироскопической аппаратуре миниатюрного исполнения, для контроля ориентации скважин в нефтегазовой и других отраслях хозяйства
Наверх