Способ определения фазы рабочего цикла двс

Изобретение относится к двигателестроению и может быть использовано для управления двигателем внутреннего сгорания (ДВС) с распределенным впрыском топлива. Изобретение позволяет повысить точность управления ДВС в отсутствие датчика фаз. Способ определения фазы рабочего цикла ДВС, снабженного электронной системой управления, включающей в себя датчик положения коленчатого вала, контроллер, выполненный на базе микроЭВМ, топливные форсунки и катушки зажигания, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС. Фазу рабочего цикла определяют при пуске ДВС. Для чего раскручивают пусковым устройством коленчатый вал ДВС, затем выполняют тестовый впрыск топлива в выбранный цилиндр ДВС и воспламеняют топливно-воздушную смесь в выбранном цилиндре. Подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС. 9 ил.

 

Изобретение относится к области двигателестроения и может быть использовано для управления двигателем внутреннего сгорания (далее ДВС) с распределенным впрыском топлива.

Из уровня техники известны электронные системы управления ДВС с распределенным последовательным впрыском топлива (см., например, Твег Росс. Системы впрыска бензина. Устройство, обслуживание, ремонт. М.: Изд. "За рулем", 1999 г., стр.104), включающие в себя датчик углового положения коленчатого вала ДВС (далее датчик положения коленвала), контроллер на базе микроЭВМ, датчик углового положения распределительного вала ДВС (далее датчик фаз), индивидуальные для каждого цилиндра катушки зажигания и топливные форсунки.

Полный рабочий цикл ДВС осуществляется за два оборота коленчатого вала, поэтому угловое положение коленчатого вала не дает точной информации о фазе рабочего процесса. Для однозначного определения фазы рабочего процесса контроллером используют совокупность сигналов датчика положения коленвала и датчика фаз. Электронная система управления ДВС усложнена наличием датчика фаз и дополнительной проводкой, связывающей этот датчик с контроллером системы управления ДВС.

Из патентов RU 2242732, RU 2242733, RU 2242734, МПК7 G01M 15/00, F02M 65/00, публ. 20.12.2004 г., известны способы определения фазы рабочего цикла ДВС с распределенным впрыском топлива в системе, снабженной датчиком положения коленвала, датчиком фаз, контроллером, выполненным на базе микроЭВМ, и топливными форсунками.

Упомянутые выше способы реализуются после пуска в процессе работы ДВС и предусматривают - при отсутствии (пропадании) сигнала датчика фаз - впрыск тестового пониженного/повышенного количества топлива в один из цилиндров и определение по реакции двигателя такта рабочего хода выбранного цилиндра и фазы рабочего цикла ДВС. Реакцию ДВС определяют по изменению времени поворота коленчатого вала на заданный угол (патент RU 2242732) или по изменению угловой скорости коленчатого вала (патенты RU 2242733, RU 2242734).

За прототип заявляемого технического решения взят способ определения фазы рабочего цикла ДВС, известный из патента RU 2170915 C1, МПК7 G01M 15/00, F02M 65/00, публ. 20.07.2001 г. Способ предусматривает на режиме группового впрыска топлива выполнение тестового впрыска пониженного/повышенного количества топлива в один из цилиндров ДВС, воспламенение топливно-воздушной смеси в цилиндрах и определение по реакции двигателя такта рабочего хода выбранного цилиндра и фазы рабочего цикла ДВС.

Способ-прототип применяется только на послепусковых режимах, поэтому возможность точного управления ДВС, а именно управление количеством топлива, впрыскиваемого в цилиндры, возникает не с момента старта ДВС.

Задачей заявляемого технического решения является повышение точности управления ДВС в отсутствие датчика фаз.

Указанная задача решается способом определения фазы рабочего цикла, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС.

Задача решается тем, что при пуске ДВС раскручивают пусковым устройством (в качестве пускового устройства может быть использован, например, стартер или стартер-генератор) коленчатый вал ДВС, после чего выполняют тестовый впрыск топлива в один из цилиндров ДВС, воспламеняют топливно-воздушную смесь в цилиндре, определяют, что такт, в котором была обнаружена реакция, является тактом рабочего хода выбранного цилиндра, и устанавливают фазу рабочего цикла ДВС, а подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС.

Приведенная совокупность признаков в сравнении с известным уровнем техники позволяет сделать вывод о соответствии заявляемого технического решения условию «новизна». В то же время совокупность отличительных признаков, приводящая к решению поставленной задачи, явным образом не следует из уровня техники, поэтому заявляемое техническое решение соответствует условию «изобретательский уровень».

Сущность изобретения поясняется следующими чертежами.

На фиг.1 показана схема системы управления ДВС для реализации заявленного способа; на фиг.2.1-2.4 приведена графическая развертка работы двигателя в зависимости от угла положения коленчатого вала (ПКВ) на режиме пуска и послепусковом режиме при наиболее предпочтительном моменте тестового впрыска топлива; на фиг.3.1-3.4 приведена графическая развертка работы двигателя в зависимости от угла положения коленчатого вала на режиме пуска и послепусковом режиме при наименее предпочтительном моменте тестового впрыска топлива.

Заявляемое техническое решение может быть реализовано в системе управления четырехтактного четырехцилиндрового ДВС, включающей в себя (см. фиг.1) датчик 1 углового положения коленчатого вала ДВС, контроллер 2, выполненный на базе микроЭВМ, топливные форсунки 3 и катушки 4 зажигания.

Датчик 1 углового положения подключен ко входу контроллера 2, топливные форсунки 3 и катушки 4 зажигания подключены к выходам контроллера 2. В качестве датчика 1 положения коленвала может быть использован индукционный (электромагнитный) датчик. Датчик размещают над зубчатым диском, закрепленным на коленвале двигателя и имеющем 58 зубьев (60 минус 2 пропущенных зуба).

В примере показана система управления четырехцилиндровым ДВС, однако способ осуществим для двигателя с любым числом цилиндров.

Система также может содержать другие датчики режима работы ДВС, такие как датчик расхода воздуха, датчик положения дроссельной заслонки, датчик температуры охлаждающей жидкости и т.п., подключенные к соответствующим входам контроллера 2.

Система работает следующим образом.

В исходном состоянии двигатель не работает, сигналы датчика 1 углового положения коленвала двигателя не формируются. Форсунки 3 и катушки 4 зажигания находятся в выключенном состоянии, т.е. топливоподача в ДВС отсутствует, напряжение на электроды свечей зажигания не подается.

Для реализации заявляемого технического решения выполняют следующую последовательность действий.

Стартером или другим пусковым устройством раскручивают коленчатый вал ДВС. Этот режим работы ДВС называется пусковым или режимом пуска двигателя.

Выбирают цилиндр для осуществления тестового впрыска топлива. В данном примере выбран первый цилиндр.

По прохождению мимо чувствительного элемента датчика 1 положения коленвала опорной метки на зубчатом диске-задатчике (пропущенные зубья) определяют контроллером 2 прохождение поршнем в выбранном цилиндре верхней мертвой точки (далее в.м.т.).

Контроллером 2 подают - в привязке к в.м.т.- импульс питающего напряжения на топливную форсунку 3 выбранного цилиндра ДВС, благодаря чему осуществляют тестовый впрыск топлива в выбранный цилиндр.

Воспламеняют топливно-воздушную смесь в цилиндре посредством подачи управляющего напряжения одновременно на катушки зажигания первого и четвертого или второго и третьего цилиндров, в зависимости от выбранной для тестового впрыска форсунки.

Определяют реакцию ДВС на тестовый впрыск топлива (как изменение скорости коленвала или изменение времени прохождения валом заданного угла).

Если реакция обнаружена, то контроллером 2 определяют, что такт, в котором была обнаружена реакция, является тактом рабочего хода выбранного цилиндра, и устанавливают фазу рабочего цикла ДВС.

Работа двигателя в зависимости от угла положения коленчатого вала на режиме пуска и послепусковом режиме при наиболее предпочтительном моменте тестового впрыска топлива показана на фиг.2.1-2.4. Тестовый впрыск осуществляют на такте работы первого цилиндра, который оказывается тактом впуска (фиг.2.1). За этим следуют такты сжатия с последующей подачей импульса зажигания на свечу первого цилиндра (фиг.2.3), воспламенение топливо-воздушной смеси и такт рабочего хода, при котором возрастает угловая скорость коленвала (фиг.2.4). Возрастание угловой скорости коленвала регистрируют контроллером как такт рабочего хода первого цилиндра и в соответствии с этой установкой определяют фазу рабочего цикла ДВС. Учитывая тот факт, что поршни ДВС вполне однозначно связаны между собой коленвалом, а порядок работы одного из цилиндров (в данном случае - первого) также определен однозначно, синхронизация работы остальных трех цилиндров может быть осуществлена известными методами по заранее заданному алгоритму. В последующем после определения фазы рабочего цикла ДВС такте впрыск осуществляют по заданному для данного ДВС алгоритму, в данном случае во второй цилиндр (фиг.2.2). Следуют последовательные впрыски в первый, третий, четвертый и второй цилиндры. Цилиндры последовательно проходят такты рабочего процесса, двигатель запускается и выходит на послепусковой режим работы (фиг.2.4).

Однако изначально момент тестового впрыска топлива может оказаться не столь удачным и, в наиболее худшем варианте, совпасть с тактом рабочего хода первого цилиндра (фиг.3.1). Соответственно, далее следуют такты выпуска, впуска и сжатия с последующей подачей импульса зажигания на свечу первого цилиндра (фиг.3.3), воспламенение топливо-воздушной смеси и такт рабочего хода, при котором возрастает угловая скорость коленвала (фиг.3.4). Далее процедура повторяет описанное выше: возрастание угловой скорости коленвала регистрируют контроллером как такт рабочего хода первого цилиндра и в соответствии с этой установкой определяют фазу рабочего цикла ДВС. В конечном итоге двигатель запускается и выходит на послепусковой режим работы (фиг.3.4).

Предложенный способ позволяет повысить точность управления ДВС в отсутствие датчика фаз за счет отнесения начала фазированного впрыска на режим пуска двигателя.

Способ определения фазы рабочего цикла ДВС, снабженного электронной системой управления, включающей в себя датчик положения коленчатого вала, контроллер, выполненный на базе микроЭВМ, топливные форсунки и катушки зажигания, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС, отличающийся тем, что фазу рабочего цикла определяют при пуске ДВС, для чего раскручивают пусковым устройством коленчатый вал ДВС, затем выполняют тестовый впрыск топлива в выбранный цилиндр ДВС и воспламеняют топливно-воздушную смесь в выбранном цилиндре, а подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС.



 

Похожие патенты:

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании ДВС. .

Изобретение относится к технике испытания в эксплуатационных условиях двигателей внутреннего сгорания с воспламенением горючей смеси от сжатия. .

Изобретение относится к области машиностроения, в частности к гидравлическим устройствам для испытаний турбомашин. .

Изобретение относится к стендовым испытаниям систем автоматического управления и контроля газотурбинных двигателей (САУК ГТД). .

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно ГТД. .

Изобретение относится к испытаниям топливной аппаратуры двигателей внутреннего сгорания и может быть использовано для определения технического состояния форсунок топливной аппаратуры дизельного двигателя.

Изобретение относится к испытательной технике и электрооборудованию, в частности к устройствам испытания цепных передач на износостойкость. .

Изобретение относится к стендовому оборудованию для ускоренных ресурсных испытаний струйных аппаратов и струйной техники для перекачки пульпы. .

Изобретение относится к области испытательной техники, предназначенной для экспериментальных исследований биротативных и однорядных вентиляторов авиационных двигателей и двигателей других летательных аппаратов, например наземных и надводных летательных аппаратов на воздушной подушке и других.

Изобретение относится к области диагностики технического состояния и испытания как бензиновых ДВС в системах с принудительной вентиляцией картера (4-6 л/мин), так и дизельных ДВС большой мощности (более 180 кВт) строительных, дорожных, коммунальных машин

Изобретение относится к устройствам для измерения параметров систем двигателя внутреннего сгорания и может быть использовано для диагностирования двигателей внутреннего сгорания

Изобретение относится к стендам для испытания жидкостных ракетных двигателей большой мощности

Изобретение относится к ракетной технике и может быть использовано при создании сопловых насадков из углерод-углеродного композиционного материала (УУКМ) к соплам жидкостных ракетных двигателей (ЖРД), работающих, в том числе, в условиях одновременного воздействия окислительной среды на обе поверхности насадка: высокотемпературной окислительной газовой среды на рабочую (внутреннюю) поверхность и воздуха - на наружную

Изобретение относится к испытательной технике, в частности к редукторным установкам для моторостроения и стендам для испытания двигателей, включающим зубчатые редукторы и нагрузочные устройства

Изобретение относится к испытаниям лопаточных машин, в частности турбокомпрессоров для наддува двигателей внутреннего сгорания, и может найти широкое применение при испытаниях

Изобретение относится к области измерительной техники, а именно для повышения эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации

Изобретение относится к области испытательной техники, а именно к стендам для огневых испытаний жидкостных ракетных двигателей меньшей мощности относительно расчетной для газодинамической трубы

Изобретение относится к двигателестроению, в частности устройствам для диагностики автотракторных двигателей в условиях эксплуатации

Изобретение относится к способу определения рабочего состояния фильтра для пропускания жидкости, в частности фильтра систем подачи топлива
Наверх