Способ определения прочностных свойств высокотемпературных теплозащитных покрытий деталей и устройство для его осуществления

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно ГТД. В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, преимущественно столбчатой структуры, образованной керамическими волокнами, по направлению действия центробежной силы, создают ускорение модели или лопатки, равное центробежному, действующему в сечении ее пера с прогнозируемым наибольшим повреждением покрытия. Это позволяет нагрузить теплозащитное покрытие инерционной нагрузкой, обеспечивающей изгиб волокон, по величине равный эксплуатационному при эксплуатационной же температуре. Проведение циклических испытаний покрытия в таких условиях нагружения позволят оперативно определить его циклическую долговечность в лабораторных условиях. Лопатка в эксплуатации подвергается, в основном, действию термонапряжений, возникающих вследствие ее неравномерного нагрева. Их имитация может быть осуществлена при разогреве образца, жестко закрепленного между мембранами, имеющими высокую по сравнению с ним жесткость. Мембраны препятствуют свободному расширению образца при его разогреве, создавая деформации сжатия, превышающие уровень пластических деформаций, а затем в полуцикле охлаждения в образце возникают растягивающие деформации, превышающие предел упругости. В результате образец разрушается по действием циклического нагружения. Результатом является возможность проводить испытания лопаток и моделей с ТЗП с имитацией действующих факторов в лабораторных условиях, что существенно снижает стоимость разработки новых типов ТЗП и лопаток и дает возможность существенно повысить ресурс авиационных ГТД. 2 н. и 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно газотурбинных двигателей (ГТД).

При горении распыленного топлива в потоке воздуха внутри жаровой трубы камеры сгорания образуется факел, температура которого превышает 2000К. При этом уровне температур лопаткам турбины и стенкам жаровой трубы передается значительная доля теплового потока. Несмотря на различные системы заградительного охлаждения, температура стенок лопаток остается очень высокой и может превышать 1200°С. Для их защиты применять различные виды высокотемпературных покрытий, в первую очередь керамические теплозащитные покрытия (ТЗП). Разновидностью такого покрытия является ТЗП, образованное керамическими волокнами, не связанными между собой, что позволяет обеспечить высокое сопротивление термоусталости.

Для исследования влияния условий эксплуатации на долговечность деталей с покрытиями применяют различные методы испытаний, позволяющие имитировать действия центробежной и термоциклической нагрузок на деталь. Однако действие центробежной нагрузки на покрытие не может быть имитировано приложением сосредоточенной нагрузки. Волокна керамики расположены перпендикулярно поверхности лопатки и изгибаются под действием центробежной нагрузки, что приводит к их разрушению, поскольку керамика обладает низкой прочностью.

Известны способы и установки, разработанные для испытания лопаток турбин ГТД, образцов или моделей. Например, при испытаниях на газодинамических стендах [1] лопатки помещают в поток газа, поступающего из камеры сгорания. Однако относительно равномерный по высоте поток горячего газа не позволяет прикладывать сосредоточенную нагрузку, имитирующую центробежную, поскольку разрушение будет происходить в самой тонкой части лопатки - под бандажной полкой. Кроме того, ТЗП не подвергается нагружению центробежной нагрузкой.

Наиболее близким техническим решением является установка для испытания лопаток турбомашин на термоциклическую усталость [2], где приводятся испытания лопаток турбин, в том числе с покрытиями при простых и сложных условиях нагружения в изотермических и неизотермических температурных условиях. Разогрев лопаток осуществляется с помощью индуктора, располагающегося в сечении с минимальным запасом прочности. Неравномерное температурное поле, создаваемое с помощью специально спроектированного индуктора, имитирует эксплуатационное. К перу лопатки вдоль ее оси прикладывается нагрузка, по величине равная центробежной в опасном сечении. Разрушение пера происходит в разогреваемом сечении.

Основным недостатком данных технических решений является то, что они не позволяют испытывать ТЗП в условиях центробежной нагрузки.

Технической задачей является обеспечение нагружения рабочих лопаток турбин с ТЗП, преимущественно столбчатой структуры, например керамическое волокно, или их моделей нагрузками, имитирующими эксплуатационные, в том числе и инерционные.

Технический результат достигается в заявляемом способе определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, преимущественно покрытий столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, нанесенных на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, заключающемся в том, что рабочие лопатки турбин или их модели подвергают циклическому нагреву и охлаждению до образования в лопатках турбин или их моделях трещин или повреждения самого теплозащитного покрытия, при этом согласно изобретению в процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием по направлению действия центробежной силы создают ускорение, равное центробежному, действующему в сечении лопатки с прогнозируемым наибольшим повреждением керамических волокон теплозащитного покрытия.

В процессе нагрева, при достижении максимальной температуры, синхронно с ним к рабочей лопатке или модели прикладывают осевую нагрузку, равную центробежной, действующей в сечении рабочей лопатки или модели с прогнозируемым наибольшим повреждением керамических волокон.

Заявляемое устройство для определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, преимущественно наносимых на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, содержащее рабочую лопатку турбины или модель с теплозащитным покрытием, преимущественно столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, устройство для крепления лопатки, устройство для нагрева, индуктор, подсоединенный к источнику высокочастотного тока, систему охлаждения рабочей лопатки или модели, систему управления температурой, при этом согласно изобретению устройство дополнительно содержит нагружающее устройство, обеспечивающее синхронное, с изменением температуры, нагружение лопатки или модели нагрузкой, имитирующей центробежную, динамический силовозбудитель, который создает ускорение вдоль оси лопатки, и систему управления нагружением, которая связана с системой управления нагревом. Устройство для крепления лопатки или модели снабжено мембранами, имеющими жесткость выше, чем жесткость рабочей лопатки или модели, мембраны соединены стойками, между которыми через динамометр и захваты фиксируется лопатка или модель, захваты соединены с регулируемым источником, от которого к захватам подводится высокочастотный ток, разогревающий лопатку или модель.

В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, нанесенным по направлению действия центробежной силы, прикладывается импульс силы, создающий ускорение лопатки, равное центробежному, действующему в сечении ее пера с прогнозируемым наибольшим повреждением покрытия. Это позволяет нагрузить теплозащитное покрытие, например, состоящее из столбчатых керамических волокон, инерционной нагрузкой, обеспечивающей изгиб волокон, по величине равный эксплуатационному при эксплуатационной же температуре. Проведение циклических испытаний покрытия в таких условиях нагружения позволит оперативно определить его циклическую долговечность в лабораторных условиях.

Лопатка в эксплуатации подвергается, в основном, действию термонапряжений, возникающих вследствие ее неравномерного нагрева. Их имитация может быть осуществлена при разогреве образца, зафиксированного между мембранами, имеющими высокую по сравнению с ним жесткость. Мембраны препятствуют свободному расширению образца при его разогреве, создавая деформации сжатия, превышающие уровень пластических деформаций, а затем в полуцикле охлаждения в образце возникают растягивающие деформации, превышающие предел упругости. В результате лопатки или образец разрушаются по действием циклического нагружения.

В эксплуатации действует также центробежная нагрузка, которая при совместном действии с термонапряжениями на подложку ТЗП приводит к ее деформации, влияющей на расстояние между керамическим волокнами. Поэтому кроме сообщения лопатке импульса силы, обеспечивающего ее ускорение до заданной величины и создание термических деформаций, лопатку или ее модель подвергают действию осевой нагрузки, равной по величине, действующей в исследуемом сечении.

Устройство для определения прочностных свойств высокотемпературных теплозащитных покрытий деталей включает нагружающее устройство, создающее импульс силы, обеспечивающий ускорение рабочей лопатки или модели до заданной величины, нагружающее устройство, обеспечивающее нагружение лопатки или модели термонапряжениями или обеспечивающее неравномерный разогрев лопатки или модели, например, с помощью высокочастотного разогрева, который обеспечивает создание термонапряжений. Кроме того, оно включает дополнительное нагружающее устройство, обеспечивающее синхронное с нагревом нагружение механической силой вдоль оси пера лопатки.

На фиг.1 схематично показано теплозащитное покрытие столбчатой структуры, образованное, например, керамическими волокнами и нанесенное на лопатку.

На фиг.2 изображена схема устройства для испытаний рабочих лопаток ГТД или их моделей при образовании термонапряжений путем их фиксирования между жесткими мембранами.

На фиг.3 изображена схема устройства для испытаний лопаток или их моделей при создании термонапряжений с помощью неравномерного индукционного нагрева и приложения к рабочей лопатке или модели дополнительной растягивающей осевой нагрузки, имитирующей центробежную нагрузку.

Теплозащитное покрытие столбчатой структуры на фиг.1, образованное, например, керамическими волокнами 1, выращенными на металлическом подслое 2, нанесено на основной материал 3 лопатки 8 перпендикулярно ее поверхности. При вращении лопатки 8 керамические волокна 1, находящиеся в поле действия центробежной нагрузки Q, подвергаются изгибу, что вследствие низкой прочности на растяжение приводит к их быстрому разрушению. Основной материал 3 лопатки 8 под действием термонапряжений и центробежной нагрузки F также деформируется, что приводит к деформации подслоя 2, также влияющего на циклическую долговечность керамических волокон 1.

Устройство на фиг.2 включает соединенные стойками 4 жесткие мембраны 5, между которыми через динамометр 6 и захваты 7 закреплена лопатка 8 или модель с теплозащитным покрытием 1, например керамическими волокнами. К захватам 7 от регулируемого источника 9 подводится ток, разогревающий лопатку 8. Температура и цикл разогрева регулируется с помощью системы управления 10. С помощью силовозбудителя 11, система управления которого связана с системой управления нагревом, обеспечивается ускорение лопатки или модели, равное действующему при вращении лопатки турбины ГТД.

Устройство на фиг.3 включает осевое нагружающее устройство, например, в виде двух гидроцилиндров 12, закрепленных на траверсе 13, штоки которых перемещают траверсу 14. На траверсах через динамометр 6 с помощью захватов 7 зафиксирована лопатка 8 или ее модель с теплозащитным покрытием 1. Исследуемое сечение лопатки 8 или модели неравномерно разогревается бесконтактным способом с помощью индуктора 15, подсоединенного к регулируемому источнику 9 высокочастотного тока. Система управления устройства 10 обеспечивает циклический синхронный нагрев до заданной температуры и осевое нагружение с заданной силой. С помощью силовозбудителя 11, система управления которого связана с системой управления нагревом, обеспечивают ускорение лопатки 8 или модели, равное действующему при вращении лопатки турбины ГТД.

Заявляемое устройство по предлагаемому способу работает следующим образом.

Лопатка 8 или модель, установленные в захватах 7, нагреваются с помощью источника тока или высокочастотного генератора 9 до задаваемой системой управления устройства 10 температуры. Синхронно с изменением температуры лопатка 8 (или модель) подвергается действию нагрузки, возникающей под действием стеснения термически расширяющегося образца в жесткой раме, образованной стойками 4 и мембранами 5, или нагрузки, создаваемой гидроцилиндрами 12, закрепленными на нижней траверсе 13, при перемещении верхней траверсы 14. Изменение нагрузки происходит синхронно с нагревом и контролируется с помощью динамометра 6. При достижении температурой заданного уровня с помощью силовозбудителя 11 образцу сообщается ускорение, равное действующему при вращении лопатки турбины. Под действием ускорения керамическим волокнам ТЗП сообщается изгиб, равный по величине действующему в натурных условиях.

Заявляемый способ и устройство для его обеспечения позволяет проводить испытания лопаток и моделей с ТЗП с имитацией действующих факторов в лабораторных условиях, что существенно снижает стоимость разработки новых типов ТЗП и лопаток. Это дает возможность существенного повышения ресурса авиационных ГТД.

Источники информации

1. Кузнецов Н.Д., Цейтлин В.И., Волков В.И. Технологические методы повышения надежности деталей машин. М.: Машиностроение, 1993 г., с.135.

2. Бычков Н.Г., Лепешкин А.Р., Першин А.В. Установка для испытаний лопаток турбомашин на термомеханическую усталость. Патент РФ №2250451 (2005.04.20).

1. Способ определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, преимущественно покрытий столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, нанесенных на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, заключающийся в том, что рабочие лопатки турбин или их модели подвергают циклическому нагреву и охлаждению до образования в лопатках турбин или их моделях трещин, или повреждения самого теплозащитного покрытия, отличающийся тем, что в процессе нагрева при достижении заданной максимальной температуры в цикле к рабочей лопатке или модели с теплозащитным покрытием по направлению действия центробежной силы создают ускорение, равное центробежному, действующему в сечении лопатки с прогнозируемым наибольшим повреждением керамических волокон теплозащитного покрытия.

2. Способ по п.1, отличающийся тем, что в процессе нагрева при достижении максимальной температуры синхронно к рабочей лопатке или модели прикладывают осевую нагрузку, равную центробежной, действующей в сечении рабочей лопатки или модели с прогнозируемым наибольшим повреждением керамических волокон.

3. Устройство для определения прочностных свойств высокотемпературных теплозащитных покрытий деталей, наносимых на детали машин, например на рабочие лопатки турбин газотурбинных двигателей (ГТД) или их модели, содержащее рабочую лопатку турбины или модель с теплозащитным покрытием, преимущественно столбчатой структуры, образованной керамическими волокнами, направленными перпендикулярно к поверхности, на которую они нанесены, устройство для крепления лопатки, устройство для нагрева, индуктор, подсоединенный к источнику высокочастотного тока, систему охлаждения рабочей лопатки или модели, систему управления температурой, отличающееся тем, что устройство дополнительно содержит нагружающее устройство, обеспечивающее синхронное с изменением температуры нагружение лопатки или модели нагрузкой, имитирующей центробежную, динамический силовозбудитель, который создает ускорение вдоль оси лопатки, и систему управления нагруженном, которая связана с системой управления нагревом, при этом устройство для крепления лопатки или модели снабжено мембранами, имеющими жесткость выше, чем жесткость рабочей лопатки или модели, мембраны соединены стойками, между которыми через динамометр и захваты фиксируется лопатка или модель, захваты соединены с регулируемым источником, от которого к захватам подводится высокочастотный ток, разогревающий лопатку или модель.



 

Похожие патенты:

Изобретение относится к испытаниям топливной аппаратуры двигателей внутреннего сгорания и может быть использовано для определения технического состояния форсунок топливной аппаратуры дизельного двигателя.

Изобретение относится к испытательной технике и электрооборудованию, в частности к устройствам испытания цепных передач на износостойкость. .

Изобретение относится к стендовому оборудованию для ускоренных ресурсных испытаний струйных аппаратов и струйной техники для перекачки пульпы. .

Изобретение относится к области испытательной техники, предназначенной для экспериментальных исследований биротативных и однорядных вентиляторов авиационных двигателей и двигателей других летательных аппаратов, например наземных и надводных летательных аппаратов на воздушной подушке и других.

Изобретение относится к способам вибрационной диагностики механизмов периодического действия, в частности к диагностированию технического состояния поршневых компрессоров двухстороннего действия по вибрации корпуса, и может быть использовано для оценки их технического состояния.

Изобретение относится к области испытания турбореактивных двигателей на стенде в условиях, близких к полетным. .

Изобретение относится к технике испытания в эксплуатационных условиях двс с воспламенением горючей смеси от сжатия. .

Изобретение относится к области транспортного машиностроения, а именно к конструкциям испытательных стендов, связанных с доводкой и определением ресурса автомобилей, строительно-дорожных машин, колесных тракторов, и может быть использовано на заводах производителях автомобилей, колесных тракторов, дорожно-строительных машин, а также в сфере сервиса и ремонта перечисленной техники.
Изобретение относится к области создания абразивных смесей для испытания рабочих органов сельскохозяйственных орудий на износ и направлено на повышение прочностных и износостойких свойств имитируемой почвы.

Изобретение относится к акустике автотранспортных средств (АТС) и может быть использовано для идентификации источников шума АТС и их ранжирования. .

Изобретение относится к стендовым испытаниям систем автоматического управления и контроля газотурбинных двигателей (САУК ГТД)

Изобретение относится к области машиностроения, в частности к гидравлическим устройствам для испытаний турбомашин

Изобретение относится к технике испытания в эксплуатационных условиях двигателей внутреннего сгорания с воспламенением горючей смеси от сжатия

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании ДВС

Изобретение относится к двигателестроению и может быть использовано для управления двигателем внутреннего сгорания (ДВС) с распределенным впрыском топлива

Изобретение относится к области диагностики технического состояния и испытания как бензиновых ДВС в системах с принудительной вентиляцией картера (4-6 л/мин), так и дизельных ДВС большой мощности (более 180 кВт) строительных, дорожных, коммунальных машин

Изобретение относится к устройствам для измерения параметров систем двигателя внутреннего сгорания и может быть использовано для диагностирования двигателей внутреннего сгорания

Изобретение относится к стендам для испытания жидкостных ракетных двигателей большой мощности

Изобретение относится к ракетной технике и может быть использовано при создании сопловых насадков из углерод-углеродного композиционного материала (УУКМ) к соплам жидкостных ракетных двигателей (ЖРД), работающих, в том числе, в условиях одновременного воздействия окислительной среды на обе поверхности насадка: высокотемпературной окислительной газовой среды на рабочую (внутреннюю) поверхность и воздуха - на наружную
Наверх